Data-Driven Android Malware Intelligence: A Survey

作者: Junyang Qiu , Surya Nepal , Wei Luo , Lei Pan , Yonghang Tai

DOI: 10.1007/978-3-030-30619-9_14

关键词:

摘要: Android has dominated the smartphone market and become most popular mobile operating system. This rapidly increasing share of contributed to boom malware in numbers varieties. There exist many techniques which are proposed accurately detect malware, e.g., software engineering-based machine learning (ML)-based techniques. In this paper, our main contributions threefold: We reviewed existing analysis for detection; focused on code based detection under ML frameworks; gave future research challenges directions about analysis.

参考文章(87)
Mykola Protsenko, Tilo Müller, Android Malware Detection Based on Software Complexity Metrics trust and privacy in digital business. pp. 24- 35 ,(2014) , 10.1007/978-3-319-09770-1_3
Borja Sanz, Igor Santos, Carlos Laorden, Xabier Ugarte-Pedrero, Pablo Garcia Bringas, Gonzalo Álvarez, PUMA: Permission Usage to Detect Malware in Android CISIS/ICEUTE/SOCO Special Sessions. pp. 289- 298 ,(2013) , 10.1007/978-3-642-33018-6_30
Chu Min Li, Felip Manya, None, MaxSAT, Hard and Soft Constraints Handbook of Satisfiability. pp. 613- 631 ,(2009) , 10.3233/978-1-58603-929-5-613
Chao Yang, Zhaoyan Xu, Guofei Gu, Vinod Yegneswaran, Phillip Porras, DroidMiner: Automated Mining and Characterization of Fine-grained Malicious Behaviors in Android Applications european symposium on research in computer security. pp. 163- 182 ,(2014) , 10.1007/978-3-319-11203-9_10
Heqing Huang, Yeonjoon Lee, Kai Chen, Peng Liu, Peng Wang, Nan Zhang, Wei Zou, XiaoFeng Wang, Finding unknown malice in 10 seconds: mass vetting for new threats at the Google-play scale usenix security symposium. pp. 659- 674 ,(2015)
Tudor Dumitras, Carl Sabottke, Octavian Suciu, Vulnerability disclosure in the age of social media: exploiting twitter for predicting real-world exploits usenix security symposium. pp. 1041- 1056 ,(2015)
Yousra Aafer, Wenliang Du, Heng Yin, DroidAPIMiner: Mining API-Level Features for Robust Malware Detection in Android Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. pp. 86- 103 ,(2013) , 10.1007/978-3-319-04283-1_6
William Enck, Patrick McDaniel, Jaeyeon Jung, Byung-Gon Chun, Peter Gilbert, Anmol N. Sheth, Landon P. Cox, TaintDroid: an information-flow tracking system for realtime privacy monitoring on smartphones operating systems design and implementation. pp. 393- 407 ,(2010) , 10.5555/1924943.1924971
Asaf Shabtai, Uri Kanonov, Yuval Elovici, Chanan Glezer, Yael Weiss, Andromaly: a behavioral malware detection framework for android devices intelligent information systems. ,vol. 38, pp. 161- 190 ,(2012) , 10.1007/S10844-010-0148-X