Estimating α-frontier technical efficiency with shape-restricted kernel quantile regression

作者: Yongqiao Wang , Shouyang Wang , None

DOI: 10.1016/J.NEUCOM.2012.08.009

关键词:

摘要: In frontier analysis, most of nonparametric approaches produce a full that envelopes all observations. Its sensitivity to extreme values and outliers can be overcome by @a-frontier, which is defined as the @a-quantile output conditional on given input. The @a-frontier regarded benchmark whether specified firm achieves top @a efficiency. This paper proposes smooth multivariate estimation for based shape-restricted kernel quantile regression. method explicitly appends classical regression with two shape restrictions: nondecreasing concave, are necessary conditions production functions. training semi-infinite programming discretized semidefinite problem, computationally tractable. Theoretical analysis shows rate exceedance in samples will converge size data increases. Experimental results toy sets clearly show this exploitation these prior knowledge greatly improve learning performance. set from NBER-CES Manufacturing Industry Database shaped restricted achieve better out-of-sample performance than those methods.

参考文章(43)
O.L. Mangasarian, David R. Musicant, Large Scale Kernel Regression via Linear Programming Machine Learning. ,vol. 46, pp. 255- 269 ,(2002) , 10.1023/A:1012422931930
Nello Cristianini, John Shawe-Taylor, Kernel Methods for Pattern Analysis ,(2004)
S. N. Afriat, THE CONSTRUCTION OF UTILITY FUNCTIONS FROM EXPENDITURE DATA International Economic Review. ,vol. 8, pp. 67- ,(1967) , 10.2307/2525382
J.A.K. Suykens, J. Vandewalle, Least Squares Support Vector Machine Classifiers Neural Processing Letters. ,vol. 9, pp. 293- 300 ,(1999) , 10.1023/A:1018628609742
Francisco Guerra-Vázquez, Jan-J. Rückmann, Semi‐Infinite Programming Wiley Encyclopedia of Operations Research and Management Science. ,(1998) , 10.1002/9780470400531.EORMS1037
Alex J. Smola, Bernhard Schölkopf, A tutorial on support vector regression Statistics and Computing. ,vol. 14, pp. 199- 222 ,(2004) , 10.1023/B:STCO.0000035301.49549.88
R. D. Banker, A. Maindiratta, Maximum likelihood estimation of monotone and concave production frontiers Journal of Productivity Analysis. ,vol. 3, pp. 401- 415 ,(1992) , 10.1007/BF00163435
Wim Meeusen, Julien van Den Broeck, Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error International Economic Review. ,vol. 18, pp. 435- 444 ,(1977) , 10.2307/2525757
Andreas Behr, Quantile regression for robust bank efficiency score estimation European Journal of Operational Research. ,vol. 200, pp. 568- 581 ,(2010) , 10.1016/J.EJOR.2008.12.033
Roger Koenker, Beum J. Park, An interior point algorithm for nonlinear quantile regression Journal of Econometrics. ,vol. 71, pp. 265- 283 ,(1996) , 10.1016/0304-4076(96)84507-6