Random geometric series and intersymbol interference

作者: F. Hill , M. Blanco

DOI: 10.1109/TIT.1973.1055004

关键词:

摘要: An interesting and long-standing problem in probability theory is surveyed, its applications to analyzing the effects of intersymbol interference digital transmission systems are discussed. Old new results presented which enable one obtain analytical forms for density function special eases. The error then computed compared with some popular upper bounds.

参考文章(22)
J Salz, E J Weldon, R W Lucky, Principles of data communication ,(1968)
I. M. Jacobs, J. M. Wozencraft, Principles of Communication Engineering ,(1965)
Kai Lai Chung, A Course in Probability Theory ,(1949)
Børge Jessen, Aurel Wintner, Distribution functions and the Riemann zeta function Transactions of the American Mathematical Society. ,vol. 38, pp. 48- 88 ,(1935) , 10.1090/S0002-9947-1935-1501802-5
John G. Kemeny, J. Laurie Snell, Markov processes in learning theory Psychometrika. ,vol. 22, pp. 221- 230 ,(1957) , 10.1007/BF02289123
F. S. Hill, The Computation of Error Probability for Digital Transmission Bell System Technical Journal. ,vol. 50, pp. 2055- 2077 ,(1971) , 10.1002/J.1538-7305.1971.TB02594.X
S. Golomb, On the survival of sequence information in filters (Corresp.) IEEE Transactions on Information Theory. ,vol. 18, pp. 310- 312 ,(1972) , 10.1109/TIT.1972.1054762
Kenneth E. Iverson, A Programming Language ,(1962)
Y. S. Yeh, E. Y. Ho, Improved Intersymbol Interference Error Bounds in Digital Systems Bell System Technical Journal. ,vol. 50, pp. 2585- 2598 ,(1971) , 10.1002/J.1538-7305.1971.TB02622.X
Maxime Bocher, Introduction to Higher Algebra ,(2014)