Nonnegative measures belonging to $H^{-1}(\mathbb{R}^2)$

作者: Grzegorz Jamróz

DOI:

关键词:

摘要: Radon measures belonging to the negative Sobolev space $H^{-1}(\mathbb{R}^2)$ are important from point of view fluid mechanics as they model vorticity vortex-sheet solutions incompressible Euler equations. In this note we discuss regularity conditions sufficient for nonnegative supported on a line be in $H^{-1}(\mathbb{R}^2)$. Applying obtained results, derive consequences $\mathbb{R}^2$ with arbitrary support and prove elementarily, among other things, that may set Hausdorff dimension $0$. We comment possible numerical applications.

参考文章(8)
Steven Schochet, THE POINT-VORTEX METHOD FOR PERIODIC WEAK SOLUTIONS OF THE 2-D EULER EQUATIONS Communications on Pure and Applied Mathematics. ,vol. 49, pp. 911- 965 ,(1996) , 10.1002/(SICI)1097-0312(199609)49:9<911::AID-CPA2>3.0.CO;2-A
Jean-Marc Delort, Existence de nappes de tourbillon en dimension deux Journal of the American Mathematical Society. ,vol. 4, pp. 553- 586 ,(1991) , 10.1090/S0894-0347-1991-1102579-6
Milton C. Lopes Filho, John Lowengrub, Helena J. Nussenzveig Lopes, Yuxi Zheng, Numerical evidence of nonuniqueness in the evolution of vortex sheets Mathematical Modelling and Numerical Analysis. ,vol. 40, pp. 225- 237 ,(2006) , 10.1051/M2AN:2006012
Ronald J. Diperna, Andrew J. Majda, Concentrations in regularizations for 2-D incompressible flow Communications on Pure and Applied Mathematics. ,vol. 40, pp. 301- 345 ,(1987) , 10.1002/CPA.3160400304
O. Dovgoshey, O. Martio, V. Ryazanov, M. Vuorinen, The Cantor function Expositiones Mathematicae. ,vol. 24, pp. 1- 37 ,(2006) , 10.1016/J.EXMATH.2005.05.002
Tomasz Cieślak, Marta Szumańska, A theorem on measures in dimension 2 and applications to vortex sheets Journal of Functional Analysis. ,vol. 266, pp. 6780- 6795 ,(2014) , 10.1016/J.JFA.2014.04.002