Deep Learning in Mammography: Diagnostic Accuracy of a Multipurpose Image Analysis Software in the Detection of Breast Cancer.

作者: Anton S. Becker , Magda Marcon , Soleen Ghafoor , Moritz C. Wurnig , Thomas Frauenfelder

DOI: 10.1097/RLI.0000000000000358

关键词:

摘要: ObjectivesThe aim of this study was to evaluate the diagnostic accuracy a multipurpose image analysis software based on deep learning with artificial neural networks for detection breast cancer in an independent, dual-center mammography data set.Materials and MethodsIn retrospective,

参考文章(24)
Daniel Cardoso Moura, Miguel Angel Guevara López, Pedro Cunha, Naimy González de Posada, Raúl Ramos Pollan, Isabel Ramos, Joana Pinheiro Loureiro, Inês C. Moreira, Bruno M. Ferreira de Araújo, Teresa Cardoso Fernandes, Benchmarking Datasets for Breast Cancer Computer-Aided Diagnosis CADx iberoamerican congress on pattern recognition. pp. 326- 333 ,(2013) , 10.1007/978-3-642-41822-8_41
Geoffrey E. Hinton, To recognize shapes, first learn to generate images. Progress in Brain Research. ,vol. 165, pp. 535- 547 ,(2007) , 10.1016/S0079-6123(06)65034-6
Raúl Ramos-Pollán, Miguel Angel Guevara-López, Cesar Suárez-Ortega, Guillermo Díaz-Herrero, Jose Miguel Franco-Valiente, Manuel Rubio-del-Solar, Naimy González-de-Posada, Mario Augusto Pires Vaz, Joana Loureiro, Isabel Ramos, Discovering Mammography-based Machine Learning Classifiers for Breast Cancer Diagnosis Journal of Medical Systems. ,vol. 36, pp. 2259- 2269 ,(2012) , 10.1007/S10916-011-9693-2
Francesco Sardanelli, Franca Podo, Filippo Santoro, Siranoush Manoukian, Silvana Bergonzi, Giovanna Trecate, Daniele Vergnaghi, Massimo Federico, Laura Cortesi, Stefano Corcione, Sandro Morassut, Cosimo Di Maggio, Anna Cilotti, Laura Martincich, Massimo Calabrese, Chiara Zuiani, Lorenzo Preda, Bernardo Bonanni, Luca A. Carbonaro, Alma Contegiacomo, Pietro Panizza, Ernesto Di Cesare, Antonella Savarese, Marcello Crecco, Daniela Turchetti, Maura Tonutti, Paolo Belli, Alessandro Del Maschio, Multicenter Surveillance of Women at High Genetic Breast Cancer Risk Using Mammography, Ultrasonography, and Contrast-Enhanced Magnetic Resonance Imaging (the High Breast Cancer Risk Italian 1 Study): Final Results Investigative Radiology. ,vol. 46, pp. 94- 105 ,(2011) , 10.1097/RLI.0B013E3181F3FCDF
Nancy A. Obuchowski, Nonparametric analysis of clustered ROC curve data. Biometrics. ,vol. 53, pp. 567- 578 ,(1997) , 10.2307/2533958
Rebecca A. Hubbard, Karla Kerlikowske, Chris I. Flowers, Bonnie C. Yankaskas, Weiwei Zhu, Diana L. Miglioretti, Cumulative probability of false-positive recall or biopsy recommendation after 10 years of screening mammography: a cohort study. Annals of Internal Medicine. ,vol. 155, pp. 481- 492 ,(2011) , 10.7326/0003-4819-155-8-201110180-00004
Domenic V. Cicchetti, Sara A. Sparrow, Developing criteria for establishing interrater reliability of specific items: applications to assessment of adaptive behavior. American journal of mental deficiency. ,vol. 86, pp. 127- 137 ,(1981)
Brian M. Haas, Vivek Kalra, Jaime Geisel, Madhavi Raghu, Melissa Durand, Liane E. Philpotts, Comparison of tomosynthesis plus digital mammography and digital mammography alone for breast cancer screening. Radiology. ,vol. 269, pp. 694- 700 ,(2013) , 10.1148/RADIOL.13130307
Daniel C. Moura, Miguel A. Guevara López, An evaluation of image descriptors combined with clinical data for breast cancer diagnosis computer assisted radiology and surgery. ,vol. 8, pp. 561- 574 ,(2013) , 10.1007/S11548-013-0838-2
Talya Salz, Alice R. Richman, Noel T. Brewer, Meta-analyses of the effect of false-positive mammograms on generic and specific psychosocial outcomes Psycho-oncology. ,vol. 19, pp. 1026- 1034 ,(2010) , 10.1002/PON.1676