The instanton method and its numerical implementation in fluid mechanics

作者: Tobias Grafke , Tobias Schäfer , Rainer Grauer

DOI: 10.1088/1751-8113/48/33/333001

关键词:

摘要: A precise characterization of structures occurring in turbulent fluid flows at high Reynolds numbers is one the last open problems classical physics. In this review we discuss recent developments related to application instanton methods turbulence. Instantons are saddle point configurations underlying path integrals. They equivalent minimizers Freidlin-Wentzell action and known be able characterize rare events such systems. While there an impressive body work concerning their analytical description, focuses on question how compute these numerically. a short introduction present relevant mathematical physical background before stochastic Burgers equation detail. We algorithms instantons numerically by efficient solution corresponding Euler-Lagrange equations. second focus discussion recently developed numerical filtering technique that allows extract from direct simulations. following modifications make them when applied two- or three-dimensional dynamical problems. illustrate ideas using two-dimensional Navier-Stokes

参考文章(147)
A. Walther, A. Griewank, Applying the Checkpointing Routine treeverse to Discretizations of Burgers’ Equation* Lecture Notes in Computational Science and Engineering. pp. 13- 24 ,(1999) , 10.1007/978-3-642-60155-2_2
Raphael Høegh-Krohn, Sonia Mazzucchi, Sergio Albeverio, Mathematical Theory of Feynman Path Integrals: An Introduction ,(2008)
A. Polls, V. C. Aguilera-Navarro, Rajiv K. Kalia, Gerd Röpke, M. Casas, A. N. Proto, Virulh Sa-yakanit, Jorge Luis Aliaga, R. F. Bishop, Manuel de Llano, F. B. Malik, M. J. Manninen, P. Vashishta, Lesser Blum, Jaime Keller, J. Navarro, S. Rosati, Heidi Reinholz, Jouko S. Arponen, M.de Llano, S. Fantoni, Condensed Matter Theories ,(1988)
S. R. S. Varadhan, Special invited paper. Large deviations arXiv: Probability. ,(2008) , 10.1214/07-AOP348
Vadim Linetsky, The Path Integral Approach to Financial Modeling and Options Pricing Computing in Economics and Finance. ,vol. 11, pp. 129- 163 ,(1998) , 10.1023/A:1008658226761