Remarks on a Conjecture of Barát and Tóth

作者: Atílio G. Luiz , R. Bruce Richter

DOI: 10.37236/3396

关键词:

摘要: In 2010,  Barat and Toth verified that any $r$-critical graph with at most $r+4$ vertices has a subdivision of $K_r$. Based in this result, the authors conjectured that, for every positive integer $c$, there exists bound $r(c)$ such $r$, where $r \geq r(c)$, on $r+c$ vertices note, we verify validity of this conjecture $c=5$, show counterexamples all $c 6$.

参考文章(12)
Richard K. Guy, Crossing numbers of graphs Graph Theory and Applications. pp. 111- 124 ,(1972) , 10.1007/BFB0067363
János Barát, Géza Tóth, Towards the Albertson conjecture Electronic Journal of Combinatorics. ,vol. 17, pp. 73- ,(2010) , 10.37236/345
Etienne de Klerk, Dmitrii V. Pasechnik, Alexander Schrijver, Reduction of symmetric semidefinite programs using the regular $$\ast$$-representation Mathematical Programming. ,vol. 109, pp. 613- 624 ,(2007) , 10.1007/S10107-006-0039-7
R. Bruce Richter, Carsten Thomassen, RELATIONS BETWEEN CROSSING NUMBERS OF COMPLETE AND COMPLETE BIPARTITE GRAPHS American Mathematical Monthly. ,vol. 104, pp. 131- 137 ,(1997) , 10.2307/2974980
G. A. Dirac, A Property of 4-Chromatic Graphs and some Remarks on Critical Graphs Journal of the London Mathematical Society. ,vol. s1-27, pp. 85- 92 ,(1952) , 10.1112/JLMS/S1-27.1.85
W. Mader, 3n − 5 Edges Do Force a Subdivision of \(\) Combinatorica. ,vol. 18, pp. 569- 595 ,(1998) , 10.1007/S004930050041
G. A. Dirac, Map Colour Theorems Related To the Heawood Colour Formula Journal of the London Mathematical Society. ,vol. s1-31, pp. 460- 471 ,(1956) , 10.1112/JLMS/S1-31.4.460
Paul Erdős, Siemion Fajtlowicz, On the conjecture of hajós Combinatorica. ,vol. 1, pp. 141- 143 ,(1981) , 10.1007/BF02579269
Paul A Catlin, Hajós' graph-coloring conjecture: Variations and counterexamples Journal of Combinatorial Theory, Series B. ,vol. 26, pp. 268- 274 ,(1979) , 10.1016/0095-8956(79)90062-5
D. R. Woodall, Cyclic-order graphs and Zarankiewicz's crossing-number conjecture Journal of Graph Theory. ,vol. 17, pp. 657- 671 ,(1993) , 10.1002/JGT.3190170602