Exponential Asymptotics and Stokes Line Smoothing for Generalized Solitary Waves

作者: Philippe H. Trinh

DOI: 10.1007/978-3-7091-0408-8_4

关键词:

摘要: In another paper of this volume, Grimshaw has demonstrated how techniques Borel summation can be used to elucidate the exponentially small terms that lie hidden beyond all orders a divergent asymptotic expansion. Here, we provide an alternative derivation generalized solitary waves fifth-order Korteweg-de Vries equation. We will first optimally truncate series, and then smooth Stokes line. Our method provides explicit view switching-on mechanism, thus increased understanding Phenomenon.

参考文章(6)
Roger Grimshaw, Exponential Asymptotics and Generalized Solitary Waves Asymptotic Methods in Fluid Mechanics: Survey and Recent Advances. pp. 71- 120 ,(2010) , 10.1007/978-3-7091-0408-8_3
John P. Boyd, The Devil's Invention: Asymptotic, Superasymptotic and Hyperasymptotic Series Acta Applicandae Mathematicae. ,vol. 56, pp. 1- 98 ,(1999) , 10.1023/A:1006145903624
A. B. Olde Daalhuis, S. J. Chapman, J. R. King, J. R. Ockendon, R. H. Tew, Stokes Phenomenon and Matched Asymptotic Expansions SIAM Journal on Applied Mathematics. ,vol. 55, pp. 1469- 1483 ,(1995) , 10.1137/S0036139994261769
Y. L. L., R. B. Dingle, Asymptotic Expansions: Their Derivation and Interpretation Mathematics of Computation. ,vol. 29, pp. 1152- ,(1975) , 10.2307/2005758
S. J. Chapman, J. R. King, K. L. Adams, Exponential asymptotics and Stokes lines in nonlinear ordinary differential equations Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 454, pp. 2733- 2755 ,(1998) , 10.1098/RSPA.1998.0278