A structure preserving encoding of Z in isabelle/HOL

作者: Kolyang , T. Santen , B. Wolff

DOI: 10.1007/BFB0105411

关键词:

摘要: We present a semantic representation of the core concepts specification language Z in higher-order logic. Although it is “shallow embedding” like one presented by Bowen and Gordon, our preserves structure avoids expanding schemas. The implemented logic instance generic theorem prover Isabelle. Its parser can convert concrete syntax schemas into their thus spare users from having to deal with explicitly. Our essentially conforms latest draft standard may give both clearer understanding inspire development proof calculi for Z.

参考文章(11)
John Nicholls, Z-Notation V1.1 Defense Technical Information Center. ,(1995) , 10.21236/ADA388235
Kolyang, T. Santen, B. Wolff, Correct and User-Friendly Implementations of Transformation Systems formal methods. pp. 629- 648 ,(1996) , 10.1007/3-540-60973-3_111
Mark Saaltink, Z and Eves Proceedings of the Z User Workshop. pp. 223- 242 ,(1991) , 10.1007/978-1-4471-3203-5_11
J. C. P. Woodcock, S. M. Brien, W: A Logic for Z Proceedings of the Z User Workshop. pp. 77- 96 ,(1991) , 10.1007/978-1-4471-3203-5_4
M. J. C. Gordon, T. F. Melham, Introduction to HOL: a theorem proving environment for higher order logic Cambridge University Press. ,(1993)
Jonathan Bowen, Mike Gordon, Z and HOL Z User Workshop, Cambridge 1994. pp. 141- 167 ,(1994) , 10.1007/978-1-4471-3452-7_9
Tobias Nipkow, Lawrence C. Paulson, Isabelle: A Generic Theorem Prover ,(1994)
Ina Kraan, Peter Baumann, Implementing Z in Isabelle ZUM '95 Proceedings of the 9th International Conference of Z Usres on The Z Formal Specification Notation. pp. 355- 373 ,(1995) , 10.1007/3-540-60271-2_130
Andrew Philip Martin, Machine-assisted theorem-proving for software engineering Department of Computer Science. ,(1994)