Thermalization and Return to Equilibrium on Finite Quantum Lattice Systems.

作者: Terry Farrelly , Fernando G. S. L. Brandão , Marcus Cramer

DOI: 10.1103/PHYSREVLETT.118.140601

关键词:

摘要: Thermal states are the bedrock of statistical physics. Nevertheless, when and how they actually arise in closed quantum systems is not fully understood. We consider this question for with local Hamiltonians on finite lattices. In a first step, we show that exponentially decaying correlations equilibrate after quench. Then, equilibrium state locally equivalent to thermal state, provided free energy sufficiently small has correlations. As an application, look at related important question: When stable against noise? other words, if disturb system will it return equilibrium? rigorously occurs decaying. All our results come finite-size bounds, which crucial growing field thermodynamics physical applications.

参考文章(38)
Rajendra Bhatia, Positive Definite Matrices ,(2007)
Fernando G. S. L. Brandão, Marcus Cramer, Equivalence of Statistical Mechanical Ensembles for Non-Critical Quantum Systems arXiv: Quantum Physics. ,(2015)
Mari Carmen Bañuls, J Ignacio Cirac, Matthew B Hastings, Strong and weak thermalization of infinite nonintegrable quantum systems. Physical Review Letters. ,vol. 106, pp. 050405- ,(2011) , 10.1103/PHYSREVLETT.106.050405
Leigh Hume, Derek W. Robinson, Return to equilibrium in the XY model Journal of Statistical Physics. ,vol. 44, pp. 829- 848 ,(1986) , 10.1007/BF01011909
Fernando G. S. L. Brandão, Piotr Ćwikliński, Michał Horodecki, Paweł Horodecki, Jarosław K. Korbicz, Marek Mozrzymas, Convergence to equilibrium under a random Hamiltonian. Physical Review E. ,vol. 86, pp. 031101- ,(2012) , 10.1103/PHYSREVE.86.031101
Huzihiro Araki, Gibbs states of a one dimensional quantum lattice Communications in Mathematical Physics. ,vol. 14, pp. 120- 157 ,(1969) , 10.1007/BF01645134
Sheldon Goldstein, Takashi Hara, Hal Tasaki, Time Scales in the Approach to Equilibrium of Macroscopic Quantum Systems Physical Review Letters. ,vol. 111, pp. 140401- ,(2013) , 10.1103/PHYSREVLETT.111.140401
Artur S. L. Malabarba, Luis Pedro García-Pintos, Noah Linden, Terence C. Farrelly, Anthony J. Short, Quantum Systems Equilibrate Rapidly for Most Observables Physical Review E. ,vol. 90, pp. 012121- 012121 ,(2014) , 10.1103/PHYSREVE.90.012121
Noah Linden, Sandu Popescu, Anthony J. Short, Andreas Winter, Quantum mechanical evolution towards thermal equilibrium. Physical Review E. ,vol. 79, pp. 061103- ,(2009) , 10.1103/PHYSREVE.79.061103