User intention modeling for interactive image retrieval

作者: Jingyu Cui , Fang Wen , Xiaoou Tang

DOI: 10.1109/ICME.2010.5583220

关键词:

摘要: We propose three innovative interactive methods to let computer better understand user intention in content-based image retrieval: 1. Smart list induces intention, thereby improves search results by intention-specific schema; 2. Reference strokes interaction allows specify detail about the pointing out interested regions; 3. Natural feedback easily collects data of relevance feedbacks boost performance system. Systematic study shows that proposed mechanism efficiency, reduces workload, and enhances experience.

参考文章(86)
Jin-Woo Jeong, Kyung-Wook Park, OukSeh Lee, Dong-Ho Lee, Automatic Extraction of Semantic Relationships from Images Using Ontologies and SVM Classifiers Multimedia Content Analysis and Mining. pp. 184- 194 ,(2007) , 10.1007/978-3-540-73417-8_25
Yang Jiangming, Feng Jing, Shuo Wang, Lei Zhang, Toward optimized query suggeston: user interfaces and algorithms ,(2007)
Alberto Belussi, Christos Faloutsos, Estimating the Selectivity of Spatial Queries Using the `Correlation' Fractal Dimension very large data bases. pp. 299- 310 ,(1995)
Christopher K. Harris, Mauritius A. R. Schmidtler, Effective multi-class support vector machine classification ,(2003)
John C. Platt, Fast training of support vector machines using sequential minimal optimization Advances in kernel methods. pp. 185- 208 ,(1999)
Chad Carson, Megan Thomas, Serge Belongie, Joseph M. Hellerstein, Jitendra Malik, Blobworld: A System for Region-Based Image Indexing and Retrieval Lecture Notes in Computer Science. pp. 509- 516 ,(1999) , 10.1007/3-540-48762-X_63