Toward a complete in silico, multi-layered embryonic stem cell regulatory network.

作者: Huilei Xu , Christoph Schaniel , Ihor R. Lemischka , Avi Ma'ayan

DOI: 10.1002/WSBM.93

关键词:

摘要: Recent efforts in systematically profiling embryonic stem (ES) cells have yielded a wealth of highthroughput data. Complementarily, emerging databases and computational tools facilitate ES cell studies further pave the way toward silico reconstruction regulatory networks encompassing multiple molecular layers. Here, we briefly survey databases, algorithms, software used to organize analyze high-throughput experimental data collected study mammalian cellular systems with focus on cells. The vision using heterogeneous reconstruct complete multilayered network is discussed. This review also provides an accompanying manually extracted dataset different types interactions from lowthroughput available at http://amp.pharm.mssm.edu/iscmid/literature. Pluripotent are derived inner mass developing embryo can be cultured indefinitely vitro. In vivo, mouse contribute all adult populations, including germ line. Under defined vitro conditions both human differentiate into numerous providing great promise for regenerative medicine. shown that ‘reprogrammed’ induced pluripotent (iPS) state simple combinations transcription factors. order harness exciting biomedical potential ES/iPS cells, responsible controlling pluripotency/selfrenewal as well as, commitment differentiation lineages, need characterized. Stem research increasingly employing biology approaches define ‘parts lists’ between parts their more differentiated progeny. How these interconnected gene signaling ultimately self-renewal unclear. Approaches aimed bridge gap among molecules, architectures, dynamics ‘explain’ phenotypic behavior infancy. To enable efforts, pipeline process couples has emerged. An example such outlined Figure 1. First, layers [for example: epigenomic, messenger RNA (mRNA), proteomic data] technologies. Second, extract biological knowledge out rich, complex but often, noisy datasets, advanced being developed. Moreover, methods capable synthesizing

参考文章(269)
Genaro Pimienta, Raghothama Chaerkady, Akhilesh Pandey, SILAC for global phosphoproteomic analysis. Methods of Molecular Biology. ,vol. 527, pp. 107- 116 ,(2009) , 10.1007/978-1-60327-834-8_9
Christopher J. Porter, Gareth A. Palidwor, Reatha Sandie, Paul M. Krzyzanowski, Enrique M. Muro, Carolina Perez-Iratxeta, Miguel A. Andrade-Navarro, StemBase: a resource for the analysis of stem cell gene expression data. Methods of Molecular Biology. ,vol. 407, pp. 137- ,(2007) , 10.1007/978-1-59745-536-7_11
Alexander I. Saeed, Nirmal K. Bhagabati, John C. Braisted, Wei Liang, Vasily Sharov, Eleanor A. Howe, Jianwei Li, Mathangi Thiagarajan, Joseph A. White, John Quackenbush, TM4 microarray software suite Methods in Enzymology. ,vol. 411, pp. 134- 193 ,(2006) , 10.1016/S0076-6879(06)11009-5
Alvis Brazma, Pascal Hingamp, John Quackenbush, Gavin Sherlock, Paul Spellman, Chris Stoeckert, John Aach, Wilhelm Ansorge, Catherine A. Ball, Helen C. Causton, Terry Gaasterland, Patrick Glenisson, Frank C.P. Holstege, Irene F. Kim, Victor Markowitz, John C. Matese, Helen Parkinson, Alan Robinson, Ugis Sarkans, Steffen Schulze-Kremer, Jason Stewart, Ronald Taylor, Jaak Vilo, Martin Vingron, Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nature Genetics. ,vol. 29, pp. 365- 371 ,(2001) , 10.1038/NG1201-365
Mark Reimers, Vincent J. Carey, (8) Bioconductor: An Open Source Framework for Bioinformatics and Computational Biology Methods in Enzymology. ,vol. 411, pp. 119- 134 ,(2006) , 10.1016/S0076-6879(06)11008-3
Yu Xue, Ao Li, Lirong Wang, Huanqing Feng, Xuebiao Yao, PPSP: prediction of PK-specific phosphorylation site with Bayesian decision theory BMC Bioinformatics. ,vol. 7, pp. 163- 163 ,(2006) , 10.1186/1471-2105-7-163
Avi Ma'ayan, Sherry L Jenkins, Susana Neves, Anthony Hasseldine, Elizabeth Grace, Benjamin Dubin-Thaler, Narat J Eungdamrong, Gehzi Weng, Prahlad T Ram, J Jeremy Rice, Aaron Kershenbaum, Gustavo A Stolovitzky, Robert D Blitzer, Ravi Iyengar, Formation of Regulatory Patterns During Signal Propagation in a Mammalian Cellular Network Science. ,vol. 309, pp. 1078- 1083 ,(2005) , 10.1126/SCIENCE.1108876
Xiuxia Du, Feng Yang, Nathan P Manes, David L Stenoien, Matthew E Monroe, Joshua N Adkins, David J States, Samuel O Purvine, David G Camp, II, Richard D Smith, Linear Discriminant Analysis-Based Estimation of the False Discovery Rate for Phosphopeptide Identifications† Journal of Proteome Research. ,vol. 7, pp. 2195- 2203 ,(2008) , 10.1021/PR070510T
Lilia M Iakoucheva, Predrag Radivojac, Celeste J Brown, Timothy R O’Connor, Jason G Sikes, Zoran Obradovic, A Keith Dunker, The importance of intrinsic disorder for protein phosphorylation Nucleic Acids Research. ,vol. 32, pp. 1037- 1049 ,(2004) , 10.1093/NAR/GKH253
S Asburner, CA Ball, JA Blake, D Botstein, H Butler, JM Cherry, AP Davis, K Dolinski, SS Dwight, JT Eppig, MA Harris, DP Hill, L Issel‐Tarver, A Kasarskis, S Lewis, JC Matese, JE Richardson, M Ringwald, GM Rubin, G Sherlock, Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature Genetics. ,vol. 25, pp. 25- 29 ,(2000) , 10.1038/75556