Littlewood-Paley and multiplier theorems on weighted ^{} spaces

作者: Douglas S. Kurtz

DOI: 10.1090/S0002-9947-1980-0561835-X

关键词:

摘要: The Littlewood-Paley operator y(f), for functions f defined on RX, is shown to be a bounded certain weighted LP spaces. weights satisfy an AP condition over the class of all n-dimensional rectangles with sides parallel coordinate axes. necessity this demonstrates 1-dimensional nature operator. Results multipliers are derived, including versions Marcinkiewicz Multiplier Theorem and Hormander's Theorem.

参考文章(20)
Benjamin Muckenhoupt, Richard Wheeden, On the dual of weighted $H^{1}$ of the half-space Studia Mathematica. ,vol. 63, pp. 57- 79 ,(1978) , 10.4064/SM-63-1-57-79
R. Coifman, C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals Studia Mathematica. ,vol. 51, pp. 241- 250 ,(1974) , 10.4064/SM-51-3-241-250
Marvin Rosenblum, Summability of Fourier series in Transactions of the American Mathematical Society. ,vol. 105, pp. 32- 42 ,(1962) , 10.1090/S0002-9947-1962-0160073-1
Benjamin Muckenhoupt, Weighted norm inequalities for the Hardy maximal function Transactions of the American Mathematical Society. ,vol. 165, pp. 207- 226 ,(1972) , 10.1090/S0002-9947-1972-0293384-6
Makoto KANEKO, Shigeki YANO, Weighted norm inequalities for singular integrals Journal of The Mathematical Society of Japan. ,vol. 27, pp. 570- 588 ,(1975) , 10.2969/JMSJ/02740570
Benjamin Muckenhoupt, Richard L. Wheeden, Norm inequalities for the Littlewood-Paley function *_{} Transactions of the American Mathematical Society. ,vol. 191, pp. 95- 111 ,(1974) , 10.1090/S0002-9947-1974-0387973-X
Elias M. Stein, Interpolation of linear operators Transactions of the American Mathematical Society. ,vol. 83, pp. 482- 492 ,(1956) , 10.1090/S0002-9947-1956-0082586-0
Lars Hörmander, Estimates for translation invariant operators in Lp spaces Acta Mathematica. ,vol. 104, pp. 93- 140 ,(1960) , 10.1007/BF02547187