An energy- and charge-conserving, nonlinearly implicit, electromagnetic 1D-3V Vlasov–Darwin particle-in-cell algorithm

作者: G. Chen , L. Chacón

DOI: 10.1016/J.CPC.2014.05.010

关键词:

摘要: Abstract A recent proof-of-principle study proposes a nonlinear electrostatic implicit particle-in-cell (PIC) algorithm in one dimension (Chen et al., 2011). The employs kinetically enslaved Jacobian-free Newton–Krylov (JFNK) method, and conserves energy charge to numerical round-off. In this study, we generalize the method electromagnetic simulations 1D using Darwin approximation Maxwell’s equations, which avoids radiative noise issues by ordering out light wave. An implicit, orbit-averaged, time–space-centered finite difference scheme is employed both field equations (in potential form) 1D-3V particle orbit produce discrete system that remains exactly charge- energy-conserving. Furthermore, enabled exact conservation of canonical momentum per any ignorable direction enforced via suitable scattering rule for magnetic field. We have developed simple preconditioner targets waves skin currents, allows us employ time steps O ( m i / e c v T ) larger than explicit CFL. Several experiments demonstrate accuracy, performance, properties algorithm. particular, shown be second-order accurate, CPU speedups more three orders magnitude vs. an Vlasov–Maxwell solver are demonstrated “cold” plasma regime (where k λ D ≪ 1 ).

参考文章(60)
G. Chen, L. Chacón, C.A. Leibs, D.A. Knoll, W. Taitano, Fluid preconditioning for Newton-Krylov-based, fully implicit, electrostatic particle-in-cell simulations Journal of Computational Physics. ,vol. 258, pp. 555- 567 ,(2014) , 10.1016/J.JCP.2013.10.052
O. Buneman, C.W. Barnes, J.C. Green, D.E. Nielsen, Principles and capabilities of 3-D, E-M particle simulations Journal of Computational Physics. ,vol. 38, pp. 1- 44 ,(1980) , 10.1016/0021-9991(80)90010-8
John M. Dawson, Particle simulation of plasmas Reviews of Modern Physics. ,vol. 55, pp. 403- 447 ,(1983) , 10.1103/REVMODPHYS.55.403
Akira Hasegawa, Hideo Okuda, One-Dimensional Plasma Model in the Presence of a Magnetic Field Physics of Fluids. ,vol. 11, pp. 1995- 2003 ,(1968) , 10.1063/1.1692232
C. L. Chang, H. K. Wong, C. S. Wu, Electromagnetic instabilities attributed to a cross-field ion drift. Physical Review Letters. ,vol. 65, pp. 1104- 1107 ,(1990) , 10.1103/PHYSREVLETT.65.1104
W.Wei-li Lee, Hong Qin, Ronald C. Davidson, Nonlinear perturbative electromagnetic (Darwin) particle simulation of high intensity beams Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment. ,vol. 464, pp. 465- 469 ,(2001) , 10.1016/S0168-9002(01)00109-7
D.C Barnes, T Kamimura, J.-N Leboeuf, T Tajima, Implicit particle simulation of magnetized plasmas Journal of Computational Physics. ,vol. 52, pp. 480- 502 ,(1983) , 10.1016/0021-9991(83)90004-9
A. Bruce Langdon, Some Electromagnetic Plasma Simulation Methods and Their Noise Properties Physics of Fluids. ,vol. 15, pp. 1149- 1151 ,(1972) , 10.1063/1.1694042
Rodney J Mason, Implicit moment particle simulation of plasmas Journal of Computational Physics. ,vol. 41, pp. 233- 244 ,(1981) , 10.1016/0021-9991(81)90094-2
T. Taguchi, T.M. Antonsen, K. Mima, Study of hot electron beam transport in high density plasma using 3D hybrid-Darwin code Computer Physics Communications. ,vol. 164, pp. 269- 278 ,(2004) , 10.1016/J.CPC.2004.06.038