Bernoulli maps of the interval

作者: Rufus Bowen

DOI: 10.1007/BF02759791

关键词:

摘要: The ergodic properties of expanding piecewiseC2 maps the interval are studied. It is shown that such a map Bernoulli if it weak-mixing. Conditions given imply weak-mixing (and hence Bernoulliness).

参考文章(18)
Roy L. Adler, F-expansions revisited Springer Berlin Heidelberg. pp. 1- 5 ,(1973) , 10.1007/BFB0061717
Stanislaw M. Ulam, A collection of mathematical problems ,(1960)
A. Lasota, James A. Yorke, On the Existence of Invariant Measures for Piecewise Monotonic Transformations The Theory of Chaotic Attractors. ,vol. 186, pp. 47- 54 ,(1974) , 10.1007/978-0-387-21830-4_4
Peter Walters, INVARIANT MEASURES AND EQUILIBRIUM STATES FOR SOME MAPPINGS WHICH EXPAND DISTANCES Transactions of the American Mathematical Society. ,vol. 236, pp. 121- 153 ,(1978) , 10.1090/S0002-9947-1978-0466493-1
M. Ratner, Anosov flows with gibbs measures are also Bernoullian Israel Journal of Mathematics. ,vol. 17, pp. 380- 391 ,(1974) , 10.1007/BF02757140
Keith M. Wilkinson, Ergodic properties of a class of piecewise linear transformations Probability Theory and Related Fields. ,vol. 31, pp. 303- 328 ,(1975) , 10.1007/BF00532869
N.A. Friedman, D.S. Ornstein, On isomorphism of weak Bernoulli transformations Advances in Mathematics. ,vol. 5, pp. 365- 394 ,(1970) , 10.1016/0001-8708(70)90010-1
Rufus Bowen, Bernoulli equilibrium states for axiom A diffeomorphisms Theory of Computing Systems \/ Mathematical Systems Theory. ,vol. 8, pp. 289- 294 ,(1974) , 10.1007/BF01780576
W. Parry, On theβ-expansions of real numbers Acta Mathematica Hungarica. ,vol. 11, pp. 401- 416 ,(1960) , 10.1007/BF02020954