Pressure jump interface law for the Stokes–Darcy coupling: confirmation by direct numerical simulations

作者: T. Carraro , C. Goll , A. Marciniak-Czochra , A. Mikelić

DOI: 10.1017/JFM.2013.416

关键词:

摘要: It is generally accepted that the effective velocity of a viscous flow over porous bed satisfies Beavers―Joseph slip law. To contrary, interface law for stress has been subject controversy. Recently, pressure jump rigourously derived by Marciniak-Czochra and Mikelic. In this paper, we provide confirmation analytical result using direct numerical simulation at microscopic level. best authors' knowledge, first in literature.

参考文章(30)
Rolf Rannacher, Adaptive FE Eigenvalue Computation with Applications to Hydrodynamic Stability Advances in Mathematical Fluid Mechanics. pp. 425- 450 ,(2010) , 10.1007/978-3-642-04068-9_26
Radyadour Kh. Zeytounian, Asymptotic Modelling of Fluid Flow Phenomena ,(2002)
L. Ridgway Scott, Susanne C Brenner, The Mathematical Theory of Finite Element Methods ,(2007)
Andro Mikelić, Willi Jäger, On the boundary conditions at the contact interface between a porous medium and a free fluid Annali Della Scuola Normale Superiore Di Pisa-classe Di Scienze. ,vol. 23, pp. 403- 465 ,(1996)
Jean Roberts, Jean-Marie Thomas, Mixed and hybrid finite element methods Springer-Verlag. ,(1991) , 10.1007/978-1-4612-3172-1
Andro Mikelic, Willi Jäger, On the interface boundary condition of Beavers, Joseph, and Saffman Siam Journal on Applied Mathematics. ,vol. 60, pp. 1111- 1127 ,(2000) , 10.1137/S003613999833678X
M. Sahraoui, M. Kaviany, Slip and no-slip velocity boundary conditions at interface of porous, plain media International Journal of Heat and Mass Transfer. ,vol. 35, pp. 927- 943 ,(1992) , 10.1016/0017-9310(92)90258-T
R. Rannacher, Adaptive Galerkin finite element methods for partial differential equations Journal of Computational and Applied Mathematics. ,vol. 128, pp. 205- 233 ,(2001) , 10.1016/S0377-0427(00)00513-6