Pseudospectrum Enclosures by Discretization

作者: Ian Zwaan , Birgit Jacob , Andreas Frommer , Christian Wyss , Lukas Vorberg

DOI: 10.1007/S00020-020-02621-5

关键词:

摘要: A new method to enclose the pseudospectrum via numerical range of inverse a matrix or linear operator is presented. The applied finite-dimensional discretizations an on infinite-dimensional Hilbert space, and convergence results for different approximation schemes are obtained, including finite element methods. We show that full contained in intersection sets which expressed terms ranges shifted inverses approximating matrices. illustrated by means two examples: advection–diffusion Hain–Lust operator.

参考文章(20)
L. N. Trefethen, Approximation theory and numerical linear algebra Springer US. pp. 336- 360 ,(1990) , 10.1007/978-1-4899-3442-0_30
Lloyd N. Trefethen, Mark Embree, Spectra and Pseudospectra Princeton University Press. ,(2005) , 10.1515/9780691213101
Heinz Langer, Christiane Tretter, Diagonalization of Certain Block Operator Matrices and Applications to Dirac Operators Operator Theory and Analysis. pp. 331- 358 ,(2001) , 10.1007/978-3-0348-8283-5_13
Lloyd N. Trefethen, Spectra and pseudospectra ,(2005)
Albrecht Böttcher, Hartmut Wolf, Spectral approximation for Segal-Bargmann space Toeplitz operators Banach Center Publications. ,vol. 38, pp. 25- 48 ,(1997) , 10.4064/-38-1-25-48
Ahmed Muhammad, Marco Marletta, Approximation of the Quadratic Numerical Range of Block Operator Matrices Integral Equations and Operator Theory. ,vol. 74, pp. 151- 162 ,(2012) , 10.1007/S00020-012-1971-Y
Konrad Jörgens, Lineare Operatoren in Hilberträumen Mathematische Leitfäden. ,(2000) , 10.1007/978-3-322-80094-7
Ahmed Muhammad, Marco Marletta, A numerical investigation of the quadratic numerical range of Hain-Lüst operators International Journal of Computer Mathematics. ,vol. 90, pp. 2431- 2451 ,(2013) , 10.1080/00207160.2013.780049
H. J. Landau, On Szegö’s eingenvalue distribution theorem and non-Hermitian kernels Journal D Analyse Mathematique. ,vol. 28, pp. 335- 357 ,(1975) , 10.1007/BF02786820