Real-time analysis and visualization of pathogen sequence data

作者: Richard A. Neher , Trevor Bedford

DOI: 10.1101/286187

关键词:

摘要: The rapid development of sequencing technologies has to led an explosion pathogen sequence data that are increasingly collected as part routine surveillance or clinical diagnostics. In public health, is used reconstruct the evolution pathogens, anticipate future spread, and target interventions. settings, whole genome sequences identify pathogens at strain level, can be predict phenotypes such drug resistance virulence, inform treatment by linking closely related cases. However, vast majority only for specific narrow applications typing. Comprehensive analysis these could provide detailed insight into outbreak dynamics, but not routinely done since fast, robust, interpretable work-flows in place. Here, we review recent developments real-time with a particular focus on visualization integration phenotypic data.

参考文章(37)
Jennifer Gardy, Nicholas J. Loman, Andrew Rambaut, Real-time digital pathogen surveillance — the time is now Genome Biology. ,vol. 16, pp. 155- 155 ,(2015) , 10.1186/S13059-015-0726-X
Richard A. Neher, Trevor Bedford, nextflu: real-time tracking of seasonal influenza virus evolution in humans Bioinformatics. ,vol. 31, pp. 3546- 3548 ,(2015) , 10.1093/BIOINFORMATICS/BTV381
Thu-Hien To, Matthieu Jung, Samantha Lycett, Olivier Gascuel, Fast Dating Using Least-Squares Criteria and Algorithms Systematic Biology. ,vol. 65, pp. 82- 97 ,(2016) , 10.1093/SYSBIO/SYV068
Niko Beerenwinkel, Martin Däumer, Mark Oette, Klaus Korn, Daniel Hoffmann, Rolf Kaiser, Thomas Lengauer, Joachim Selbig, Hauke Walter, Geno2pheno: estimating phenotypic drug resistance from HIV-1 genotypes Nucleic Acids Research. ,vol. 31, pp. 3850- 3855 ,(2003) , 10.1093/NAR/GKG575
Siobain Duffy, Laura A. Shackelton, Edward C. Holmes, Rates of evolutionary change in viruses: patterns and determinants Nature Reviews Genetics. ,vol. 9, pp. 267- 276 ,(2008) , 10.1038/NRG2323
Morgan N. Price, Paramvir S. Dehal, Adam P. Arkin, FastTree 2--approximately maximum-likelihood trees for large alignments. PLOS ONE. ,vol. 5, ,(2010) , 10.1371/JOURNAL.PONE.0009490
Lam-Tung Nguyen, Heiko A. Schmidt, Arndt von Haeseler, Bui Quang Minh, IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies Molecular Biology and Evolution. ,vol. 32, pp. 268- 274 ,(2015) , 10.1093/MOLBEV/MSU300
Andrew J. Page, Carla A. Cummins, Martin Hunt, Vanessa K. Wong, Sandra Reuter, Matthew T.G. Holden, Maria Fookes, Daniel Falush, Jacqueline A. Keane, Julian Parkhill, Roary: Rapid large-scale prokaryote pan genome analysis Bioinformatics. ,vol. 31, pp. 3691- 3693 ,(2015) , 10.1093/BIOINFORMATICS/BTV421
Kazutaka Katoh, Kazuharu Misawa, Kei‐ichi Kuma, Takashi Miyata, MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform Nucleic Acids Research. ,vol. 30, pp. 3059- 3066 ,(2002) , 10.1093/NAR/GKF436
Alexei J. Drummond, Marc A. Suchard, Dong Xie, Andrew Rambaut, Bayesian Phylogenetics with BEAUti and the BEAST 1.7 Molecular Biology and Evolution. ,vol. 29, pp. 1969- 1973 ,(2012) , 10.1093/MOLBEV/MSS075