作者: Ilya Kachkovskiy , Svetlana Jitomirskaya
DOI:
关键词:
摘要: We establish Anderson localization for quasiperiodic operator families of the form $$ (H(x)\psi)(m)=\psi(m+1)+\psi(m-1)+\lambda v(x+m\alpha)\psi(m) all $\lambda>0$ and Diophantine $\alpha$, provided that $v$ is a $1$-periodic function satisfying Lipschitz monotonicity condition on $[0,1)$. The uniform any energy interval which Lyapunov exponent bounded from below.