Nonparametric Divergence Estimation and its Applications to Machine Learning

作者: Barnabas Poczos , Liang Xiong , Jeff Schneider

DOI:

关键词:

摘要: Low-dimensional embedding, manifold learning, clustering, classification, and anomaly detection are among the most important problems in machine learning. Here we consider setting where each instance of inputs corresponds to a continuous probability distribution. These distributions unknown us, but given some i.i.d. samples from them. While existing learning methods operate on points, i.e. finite-dimensional feature vectors, our study algorithms that groups, sets vectors. For this purpose, propose new nonparametric, consistent estimators for large family divergences describe how apply them problems. As special cases, can be used estimate Renyi, Tsallis, Kullback-Leibler, Hellinger, Bhattacharyya distance, L2 divergences, mutual information. We present empirical results synthetic data, real word images, astronomical data sets.

参考文章(57)
Peter Harremoës, Tim van Erven, Rényi Divergence and Its Properties ,(2010)
A. M. Garcia, General study of group membership. II. Determination of nearby groups. Astronomy & Astrophysics Supplement Series. ,vol. 100, pp. 47- 90 ,(1993)
Oldrich Vasicek, A Test for Normality Based on Sample Entropy Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 38, pp. 54- 59 ,(1976) , 10.1111/J.2517-6161.1976.TB01566.X
Barnabás Póczos, Liang Xiong, Jeff Schneider, Nonparametric divergence estimation with applications to machine learning on distributions uncertainty in artificial intelligence. pp. 599- 608 ,(2011)
H. L. Le Roy, L. Lecam, J. Neyman, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; Vol. IV Revue de l'Institut International de Statistique / Review of the International Statistical Institute. ,vol. 37, pp. 230- ,(1969) , 10.2307/1402306
Anna Bosch, Andrew Zisserman, Xavier Muñoz, Scene Classification Via pLSA Computer Vision – ECCV 2006. pp. 517- 530 ,(2006) , 10.1007/11744085_40
Thomas Hofmann, Probabilistic latent semantic analysis uncertainty in artificial intelligence. ,vol. 15, pp. 289- 296 ,(1999)
Alfred O. Hero, Raviv Raich, Kumar Sricharan, Empirical estimation of entropy functionals with confidence arXiv: Statistics Theory. ,(2010)
Zoltán Szabó, Barnabás Póczos, András Lőrincz, None, Undercomplete Blind Subspace Deconvolution Journal of Machine Learning Research. ,vol. 8, pp. 1063- 1095 ,(2007)
XuanLong Nguyen, Martin J Wainwright, Michael I Jordan, None, ON surrogate loss functions and f-divergences Annals of Statistics. ,vol. 37, pp. 876- 904 ,(2009) , 10.1214/08-AOS595