Fuzzy n-Jordan *-homomorphisms in induced

作者: Khatereh Ghasemi , Shahram Ghaffary Ghaleh , Choonkil Park

DOI:

关键词:

摘要: Using fixed point method, we prove the fuzzy version of Hyers-Ulam stability n-Jordan *-homomorphisms in induced C*-algebras associated with following functional equation f � x + y z 3 − 2y

参考文章(22)
Viorel Radu, THE FIXED POINT ALTERNATIVE AND THE STABILITY OF FUNCTIONAL EQUATIONS FIXED POINT THEORY AND APPLICATIONS. ,vol. 4, pp. 91- 96 ,(2003)
Ivan Kramosil, Jiří Michálek, Fuzzy metrics and statistical metric spaces Kybernetika. ,vol. 11, pp. 336- 344 ,(1975)
T. Bag, S.K. Samanta, Fuzzy bounded linear operators Fuzzy Sets and Systems. ,vol. 151, pp. 513- 547 ,(2005) , 10.1016/J.FSS.2004.05.004
Alireza Kamel Mirmostafaee, Mohammad Sal Moslehian, Fuzzy versions of Hyers--Ulam--Rassias theorem Fuzzy Sets and Systems. ,vol. 159, pp. 720- 729 ,(2008) , 10.1016/J.FSS.2007.09.016
Alireza Kamel Mirmostafaee, Mohammad Sal Moslehian, Fuzzy approximately cubic mappings Information Sciences. ,vol. 178, pp. 3791- 3798 ,(2008) , 10.1016/J.INS.2008.05.032
Themistocles M. Rassias, On the stability of the linear mapping in Banach spaces Proceedings of the American Mathematical Society. ,vol. 72, pp. 297- 300 ,(1978) , 10.1090/S0002-9939-1978-0507327-1
S V Krishna and K K M Sarma, None, Separation of fuzzy normed linear spaces Fuzzy Sets and Systems. ,vol. 63, pp. 207- 217 ,(1994) , 10.1016/0165-0114(94)90351-4
Liviu Cădariu, Viorel Radu, Fixed Point Methods for the Generalized Stability of Functional Equations in a Single Variable Fixed Point Theory and Applications. ,vol. 2008, pp. 749392- ,(2008) , 10.1155/2008/749392
Dorel Miheţ, Viorel Radu, On the stability of the additive Cauchy functional equation in random normed spaces Journal of Mathematical Analysis and Applications. ,vol. 343, pp. 567- 572 ,(2008) , 10.1016/J.JMAA.2008.01.100
D. H. Hyers, On the Stability of the Linear Functional Equation Proceedings of the National Academy of Sciences of the United States of America. ,vol. 27, pp. 222- 224 ,(1941) , 10.1073/PNAS.27.4.222