Cyclic pure greedy algorithms for recovering compressively sampled sparse signals

作者: Bob L. Sturm , Mads G. Christensen , Remi Gribonval

DOI: 10.1109/ACSSC.2011.6190193

关键词:

摘要: The pure greedy algorithms matching pursuit (MP) and complementary MP (CompMP) are extremely computationally simple, but can perform poorly in solving the linear inverse problems posed by recovery of compressively sampled sparse signals. We show that applying a cyclic minimization principle, performance both significantly improved while remaining simple. Our simulations CompMP may not be competitive with state-of-the-art algorithms, their variations are. discuss ways which complexity further reduced, our these hurt performance. Finally, we derive exact condition algorithms.

参考文章(24)
Okan K. Ersoy, Atul Divekar, Probabilistic Matching Pursuit for Compressive Sensing ,(2010)
Gabriel Peyré, S. G. Mallat, A Wavelet Tour of Signal Processing : The Sparse Way Elsevier/Academic Press. ,(2008)
Christine Guillemot, Gagan Rath, A complementary matching pursuit algorithm for sparse approximation european signal processing conference. pp. 1- 5 ,(2008)
Bob L. Sturm, Bob L. Sturm, Sparse Vector Distributions and Recovery from Compressed Sensing arXiv: Data Structures and Algorithms. ,(2011)
Scott Shaobing Chen, David L. Donoho, Michael A. Saunders, Atomic Decomposition by Basis Pursuit SIAM Journal on Scientific Computing. ,vol. 20, pp. 33- 61 ,(1998) , 10.1137/S1064827596304010
G. Davis, S. Mallat, M. Avellaneda, Adaptive greedy approximations Constructive Approximation. ,vol. 13, pp. 57- 98 ,(1997) , 10.1007/BF02678430
P. Stoica, Y. Selen, Cyclic minimizers, majorization techniques, and the expectation-maximization algorithm: a refresher IEEE Signal Processing Magazine. ,vol. 21, pp. 112- 114 ,(2004) , 10.1109/MSP.2004.1267055
L. Rebollo-Neira, D. Lowe, Optimized orthogonal matching pursuit approach IEEE Signal Processing Letters. ,vol. 9, pp. 137- 140 ,(2002) , 10.1109/LSP.2002.1001652
David L. Donoho, Arian Maleki, Andrea Montanari, Message-passing algorithms for compressed sensing Proceedings of the National Academy of Sciences of the United States of America. ,vol. 106, pp. 18914- 18919 ,(2009) , 10.1073/PNAS.0909892106