Transformations on density operators preserving generalised entropy of a convex combination

作者: MARCELL GAÁL , GERGŐ NAGY

DOI: 10.1017/S0004972718000254

关键词:

摘要: We aim to characterise those transformations on the set of density operators (which are mathematical representatives states in quantum information theory) that preserve a so-called generalised entropy one fixed convex combination operators. The characterisation strengthens recent result Karder and Petek where preservation same quantity was assumed for all combinations.

参考文章(19)
Lajos Molnár, Patrícia Szokol, Transformations Preserving Norms of Means of Positive Operators and Nonnegative Functions Integral Equations and Operator Theory. ,vol. 83, pp. 271- 290 ,(2015) , 10.1007/S00020-015-2241-6
Erling Størmer, Sergey Neshveyev, Dynamical Entropy in Operator Algebras ,(2006)
Gy.P. Gehér, An elementary proof for the non-bijective version of Wigner's theorem Physics Letters A. ,vol. 378, pp. 2054- 2057 ,(2014) , 10.1016/J.PHYSLETA.2014.05.039
Lajos Molnár, Gergö Nagy, Transformations on Density Operators That Leave the Holevo Bound Invariant International Journal of Theoretical Physics. ,vol. 53, pp. 3273- 3278 ,(2014) , 10.1007/S10773-013-1638-8
Roman Drnovšek, The von Neumann entropy and unitary equivalence of quantum states Linear & Multilinear Algebra. ,vol. 61, pp. 1391- 1393 ,(2013) , 10.1080/03081087.2012.740030
Lajos Molnár, Gergő Nagy, Isometries and relative entropy preserving maps on density operators Linear & Multilinear Algebra. ,vol. 60, pp. 93- 108 ,(2012) , 10.1080/03081087.2011.570267
Gergő Nagy, Preservers for the -Norm of Linear Combinations of Positive Operators Abstract and Applied Analysis. ,vol. 2014, pp. 1- 9 ,(2014) , 10.1155/2014/434121
Yuan Li, Paul Busch, Von Neumann entropy and majorization Journal of Mathematical Analysis and Applications. ,vol. 408, pp. 384- 393 ,(2013) , 10.1016/J.JMAA.2013.06.019
MáTé Győry, A new proof of Wigner's theorem Reports on Mathematical Physics. ,vol. 54, pp. 159- 167 ,(2004) , 10.1016/S0034-4877(04)80012-0