APPLICATION OF BISHOP-PHELPS THEOREM IN THE APPROXIMATION THEORY

作者: R. ZARGHAMI

DOI: 10.22436/JNSA.003.02.06

关键词:

摘要: In this paper we apply the Bishop-Phelps Theorem to show that if X is a Banach space and G µ maximal subspace so ? = fx ⁄ 2 jx (y) 0; 8y Gg an Lisummand in , then L 1 (›;G) contained proximinal of (›;X).

参考文章(6)
M. SABABHEH, R. KHALIL, REMARKS ON REMOTAL SETS IN VETOR VALUED FUNCTION SPACES The Journal of Nonlinear Sciences and Applications. ,vol. 2, pp. 1- 10 ,(2009) , 10.22436/JNSA.002.01.01
ERRETT BISHOP, R. R. PHELPS, THE SUPPORT FUNCTIONALS OF A CONVEX SET WORLD SCIENTIFIC. pp. 293- 301 ,(1986) , 10.1142/9789814415514_0020
Peter Harmand, Dirk Werner, Wend Werner, M-Ideals in Banach Spaces and Banach Algebras ,(1993)
I. Sadeqi, Support functionals and their relation to the Radon-Nikodym property International Journal of Mathematics and Mathematical Sciences. ,vol. 2004, pp. 827- 832 ,(2004) , 10.1155/S0161171204205191
J.-P. Kahane, Best approximation in $L^1 \left( T \right)$ Bulletin of the American Mathematical Society. ,vol. 80, pp. 788- 805 ,(1974) , 10.1090/S0002-9904-1974-13518-4
Fumio Hiai, Hisaharu Umegaki, Integrals, Conditional Expectations and Martingales of Multivalued Functions Journal of Multivariate Analysis. ,vol. 7, pp. 149- 182 ,(1977) , 10.1016/0047-259X(77)90037-9