NONLOCAL CAUCHY PROBLEM FOR SECOND ORDER STOCHASTIC EVOLUTION EQUATIONS IN HILBERT SPACES

作者: P. Balasubramaniam , And J. Y. Park

DOI:

关键词:

摘要: Existence of mild solutions second order nonlinear stochastic evolution equations with nonlocal conditions in Hilbert spaces is established. The results are obtained by using the Schaefer xed point theorem. Application for beam equation also discussed to illustrate theory.

参考文章(26)
Wilfried Grecksch, Constantin Tudor, Stochastic Evolution Equations: A Hilbert Space Approach ,(1995)
Jan Bochenek, Existence of the fundamental solution of a second order evolution equation Annales Polonici Mathematici. ,vol. 66, pp. 15- 35 ,(1997) , 10.4064/AP-66-1-15-35
Stephen P. Timoshenko, Vibration problems in engineering ,(1928)
Luiz Adauto Medeiros, On a New Class of Nonlinear Wave Equations Journal of Mathematical Analysis and Applications. ,vol. 69, pp. 252- 262 ,(1979) , 10.1016/0022-247X(79)90192-6
Solange Kouémou Patcheu, On a Global Solution and Asymptotic Behaviour for the Generalized Damped Extensible Beam Equation Journal of Differential Equations. ,vol. 135, pp. 299- 314 ,(1997) , 10.1006/JDEQ.1996.3231
Y. El Boukfaoui, M. Erraoui, Remarks on the existence and approximation for semilinear stochastic differential equations in Hilbert spaces Stochastic Analysis and Applications. ,vol. 20, pp. 495- 518 ,(2002) , 10.1081/SAP-120004113
J.M. Ball, Stability theory for an extensible beam Journal of Differential Equations. ,vol. 14, pp. 399- 418 ,(1973) , 10.1016/0022-0396(73)90056-9
G Perla Menzala, E Zuazua, Timoshenko's plate equation as a singular limit of the dynamical von Kármán system Journal de Mathématiques Pures et Appliquées. ,vol. 79, pp. 73- 94 ,(2000) , 10.1016/S0021-7824(00)00149-5