Insights into the Action Mechanism of the Antimicrobial Peptide Lasioglossin III.

作者: Luigi Petraccone , Roland Winter , Pompea Del Vecchio , Rosario Oliva , Filomena Battista

DOI: 10.3390/IJMS22062857

关键词:

摘要: Lasioglossin III (LL-III) is a cationic antimicrobial peptide derived from the venom of eusocial bee Lasioglossum laticeps. LL-III extremely toxic to both Gram-positive and Gram-negative bacteria, it exhibits antifungal as well antitumor activity. Moreover, shows low hemolytic activity, has almost no effects on eukaryotic cells. However, molecular basis mechanism action still unclear. In this study, we characterized by means calorimetric (DSC) spectroscopic (CD, fluorescence) techniques its interaction with liposomes composed mixture 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) 1-palmitoyl-2-oleoyl-sn-glycero-3-rac-phosphoglycerol (POPG) lipids model negatively charged membrane pathogens. For comparison, uncharged POPC was also studied. Our data showed that preferentially interacted anionic in POPC/POPG induces formation lipid domains. Furthermore, leakage experiments could permeabilize membrane. Interestingly, our DSC results peptide-membrane occurs non-disruptive manner, indicating an intracellular targeting mode for peptide. Consistent hypothesis, gel-retardation assay interact plasmid DNA, suggesting possible target.

参考文章(42)
C. B. Park, K.-S. Yi, K. Matsuzaki, M. S. Kim, S. C. Kim, Structure–activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: The proline hinge is responsible for the cell-penetrating ability of buforin II Proceedings of the National Academy of Sciences of the United States of America. ,vol. 97, pp. 8245- 8250 ,(2000) , 10.1073/PNAS.150518097
Václav Čeřovský, Miloš Buděšínský, Oldřich Hovorka, Josef Cvačka, Zdeněk Voburka, Jiřina Slaninová, Lenka Borovičková, Vladimír Fučík, Lucie Bednárová, Ivan Votruba, Jakub Straka, Lasioglossins: Three Novel Antimicrobial Peptides from the Venom of the Eusocial BeeLasioglossum laticeps(Hymenoptera: Halictidae) ChemBioChem. ,vol. 10, pp. 2089- 2099 ,(2009) , 10.1002/CBIC.200900133
John Charles Marshall Stewart, Colorimetric determination of phospholipids with ammonium ferrothiocyanate. Analytical Biochemistry. ,vol. 104, pp. 10- 14 ,(1980) , 10.1016/0003-2697(80)90269-9
Kim A. Brogden, Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature Reviews Microbiology. ,vol. 3, pp. 238- 250 ,(2005) , 10.1038/NRMICRO1098
Jiřina Slaninová, Veronika Mlsová, Hilda Kroupová, Lukáš Alán, Tereza Tůmová, Lenka Monincová, Lenka Borovičková, Vladimír Fučík, Václav Čeřovský, Toxicity study of antimicrobial peptides from wild bee venom and their analogs toward mammalian normal and cancer cells Peptides. ,vol. 33, pp. 18- 26 ,(2012) , 10.1016/J.PEPTIDES.2011.11.002
Alexey S. Ladokhin, Sajith Jayasinghe, Stephen H. White, How to measure and analyze tryptophan fluorescence in membranes properly, and why bother? Analytical Biochemistry. ,vol. 285, pp. 235- 245 ,(2000) , 10.1006/ABIO.2000.4773
Robert E W Hancock, Hans-Georg Sahl, Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nature Biotechnology. ,vol. 24, pp. 1551- 1557 ,(2006) , 10.1038/NBT1267
Susmita Bandyopadhyay, Meryl Lee, J. Sivaraman, Chiradip Chatterjee, Model membrane interaction and DNA-binding of antimicrobial peptide Lasioglossin II derived from bee venom. Biochemical and Biophysical Research Communications. ,vol. 430, pp. 1- 6 ,(2013) , 10.1016/J.BBRC.2012.11.015
P. Wadhwani, R.F. Epand, N. Heidenreich, J. Bürck, A.S. Ulrich, R.M. Epand, Membrane-Active Peptides and the Clustering of Anionic Lipids Biophysical Journal. ,vol. 103, pp. 265- 274 ,(2012) , 10.1016/J.BPJ.2012.06.004