Adaptive hierarchical methods for landscape representation and analysis

作者: Th. Gerstner

DOI: 10.1007/BFB0009720

关键词:

摘要: Hierarchical interpolation techniques allow the efficient representation of digital terrain data. Due to inherent adaptivity these methods, less points are needed for storage smooth areas compared non-adaptive methods. They also derivation approximate models with variable level detail. This results in a significant compression data as well highly reduced computational cost algorithms analysis.

参考文章(24)
W. Schempp, Martin Buhmann, F.-J. Delvos, Boolean Methods in Interpolation and Approximation ,(1990)
Charles K. Chui, An introduction to wavelets ,(1992)
E. Puppo, Variable resolution triangulations Computational Geometry: Theory and Applications. ,vol. 11, pp. 219- 238 ,(1998) , 10.1016/S0925-7721(98)00029-7
W. Evans, D. Kirkpatrick, G. Townsend, Right-Triangulated Irregular Networks Algorithmica. ,vol. 30, pp. 264- 286 ,(2001) , 10.1007/S00453-001-0006-X
William F. Mitchell, Adaptive refinement for arbitrary finite-element spaces with hierarchical bases Journal of Computational and Applied Mathematics. ,vol. 36, pp. 65- 78 ,(1991) , 10.1016/0377-0427(91)90226-A
David R. Forsey, Richard H. Bartels, Hierarchical B-spline refinement ACM SIGGRAPH Computer Graphics. ,vol. 22, pp. 205- 212 ,(1988) , 10.1145/378456.378512
Michael Griebel, Multilevel algorithms considered as iterative methods on semidefinite systems SIAM Journal on Scientific Computing. ,vol. 15, pp. 547- 565 ,(1994) , 10.1137/0915036
O.C. Zienkiewicz, J.P. De S.R. Gago, D.W. Kelly, The hierarchical concept in finite element analysis Computers & Structures. ,vol. 16, pp. 53- 65 ,(1983) , 10.1016/0045-7949(83)90147-5
Georg Faber, Über stetige Funktionen Mathematische Annalen. ,vol. 69, pp. 372- 443 ,(1910) , 10.1007/BF01456327