Consistency Properties of Nearest Neighbor Density Function Estimators

作者: David S. Moore , James W. Yackel

DOI: 10.1214/AOS/1176343747

关键词:

摘要: Let $X_1, X_2,\cdots$ be $R^p$-valued random variables having unknown density function $f$. If $K$ is a on the unit sphere in $R^p, \{k(n)\}$ sequence of positive integers such that $k(n) \rightarrow \infty$ and = o(n)$, $R(k, z)$ distance from point $z$ to $k(n)$th nearest $X_1,\cdots, X_n$, then $f_n(z) (nR(k, z)^p)^{-1} \sum K((z - X_i)/R(k, z))$ neighbor estimator $f(z).$ When uniform kernel, $f_n$ an proposed by Loftsgaarden Quesenberry. The analogous well-known class Parzen-Rosenblatt bandwidth estimators $f(z)$. It shown that, roughly stated, any consistency theorem true for using kernel also remains $f_n$. In this manner results weak strong consistency, pointwise uniform, are obtained estimators.

参考文章(16)
J. Kiefer, Iterated Logarithm Analogues for Sample Quantiles When P n ↓0 University of California Press. pp. 227- 244 ,(1972) , 10.1007/978-1-4613-8505-9_43
E. W. Hobson, The Theory of Functions of a real Variable. 日本中等教育數學會雜誌. ,vol. 4, pp. 37- 38 ,(1922)
David S. Moore, James W. Yackel, Large Sample Properties of Nearest Neighbor Density Function Estimators Statistical Decision Theory and Related Topics#R##N#Proceedings of a Symposium Held at Purdue University, May 17–19, 1976. pp. 269- 279 ,(1977) , 10.1016/B978-0-12-307560-4.50018-1
D. S. Moore, E. G. Henrichon, Uniform Consistency of Some Estimates of a Density Function Annals of Mathematical Statistics. ,vol. 40, pp. 1499- 1502 ,(1969) , 10.1214/AOMS/1177697524
P. J. Bickel, M. Rosenblatt, On Some Global Measures of the Deviations of Density Function Estimates Annals of Statistics. ,vol. 1, pp. 1071- 1095 ,(1973) , 10.1214/AOS/1176342558
Murray Rosenblatt, Remarks on Some Nonparametric Estimates of a Density Function Annals of Mathematical Statistics. ,vol. 27, pp. 832- 837 ,(1956) , 10.1214/AOMS/1177728190
Theophilos Cacoullos, Estimation of a multivariate density Annals of the Institute of Statistical Mathematics. ,vol. 18, pp. 179- 189 ,(1966) , 10.1007/BF02869528
D. O. Loftsgaarden, C. P. Quesenberry, A nonparametric estimate of a multivariate density function Annals of Mathematical Statistics. ,vol. 36, pp. 1049- 1051 ,(1965) , 10.1214/AOMS/1177700079
J. Kiefer, J. Wolfowitz, On the deviations of the empiric distribution function of vector chance variables Transactions of the American Mathematical Society. ,vol. 87, pp. 173- 186 ,(1958) , 10.1090/S0002-9947-1958-0099075-1
J. Van Ryzin, ON STRONG CONSISTENCY OF DENSITY ESTIMATES Annals of Mathematical Statistics. ,vol. 40, pp. 1765- 1772 ,(1969) , 10.1214/AOMS/1177697388