A Kinetic Equation for the Distribution of Interaction Clusters in Rarefied Gases

作者: Robert I. A. Patterson , Sergio Simonella , Wolfgang Wagner

DOI: 10.1007/S10955-017-1865-0

关键词:

摘要: We consider a stochastic particle model governed by an arbitrary binary interaction kernel. A kinetic equation for the distribution of clusters is established. Under some additional assumptions recursive representation solution found. For particular choices kernel (including Boltzmann case) several explicit formulas are obtained. These confirmed numerical experiments. The experiments also used to illustrate various conjectures and open problems.

参考文章(23)
Isabelle Gallagher, Benjamin Texier, Laure Saint-Raymond, From Newton to Boltzmann: Hard Spheres and Short-range Potentials ,(2014)
Reinhard Illner, Mario Pulvirenti, Carlo Cercignani, The mathematical theory of dilute gases ,(1994)
Sergej Rjasanow, Wolfgang Wagner, Stochastic Numerics for the Boltzmann Equation ,(2005)
Vladimir Keilis-Borok, Andrei Gabrielov, Sayaka Olsen, Ilya Zaliapin, Predictability of extreme events in a branching diffusion model arXiv: Geophysics. pp. 126- 142 ,(2014) , 10.1017/CBO9781139523905.013
Kok Foong Lee, Robert I.A. Patterson, Wolfgang Wagner, Markus Kraft, Stochastic weighted particle methods for population balance equations with coagulation, fragmentation and spatial inhomogeneity Journal of Computational Physics. ,vol. 303, pp. 1- 18 ,(2015) , 10.1016/J.JCP.2015.09.031
J. B. McLEOD, ON AN INFINITE SET OF NON-LINEAR DIFFERENTIAL EQUATIONS Quarterly Journal of Mathematics. ,vol. 13, pp. 119- 128 ,(1962) , 10.1093/QMATH/13.1.119
Carson McFadden, Louis-S. Bouchard, Universality of cluster dynamics. Physical Review E. ,vol. 82, pp. 061125- 061125 ,(2010) , 10.1103/PHYSREVE.82.061125