Optimization, selection and feasibility study of solar parabolic trough power plants for Algerian conditions

作者: T.E. Boukelia , M.S. Mecibah , B.N. Kumar , K.S. Reddy

DOI: 10.1016/J.ENCONMAN.2015.05.067

关键词:

摘要: Abstract In the present study, optimization of two parabolic trough solar thermal power plants integrated with energy storage (TES), and fuel backup system (FBS) has been performed. The first plant uses Therminol VP-1 as heat transfer fluid in field second molten salt. is carried out multiple (SM) full load hours TES parameters, an objective minimizing levelized cost electricity (LCOE) maximizing annual yield. A 4E (energy–exergy–environment–economic) comparison optimized alongside Andasol 1 reference studied. salt resulting best technology, from comparative study chosen for viability analysis ten locations Algeria semi-arid arid climatic conditions. results indicate that highest mean efficiency (17.25%) exergy (23.30%). Whereas, capacity factor (54.60%) generation (236.90 GW h) are exhibited by plant. least water usage about 800,482 m 3 , but demands more land operation. Nevertheless oil emits lowest amount CO 2 gas (less than 40.3 kilo tonnes). From economic viewpoint, seems to be technology compared other due its investment 360 million dollars) lower (8.48 ¢/kW h). proposes Tamanrasset, location erection a low LCOE 7.55 ¢/kW h, high (more 266 GW h). According feasibility analysis, Algerian sites suitable realization PTSTPP FBS; especially southern (19°N–32°N, 8°W–12°E).

参考文章(35)
R. L. Sizmann, C. J. Winter, Lorin L. Vant-Hull, Solar power plants : fundamentals, technology, systems, economics Springer-Verlag. ,(1991)
Lidia Martín, Mariano Martín, Optimal year-round operation of a concentrated solar energy plant in the south of Europe Applied Thermal Engineering. ,vol. 59, pp. 627- 633 ,(2013) , 10.1016/J.APPLTHERMALENG.2013.06.031
D. Kearney, B. Kelly, U. Herrmann, R. Cable, J. Pacheco, R. Mahoney, H. Price, D. Blake, P. Nava, N. Potrovitza, Engineering aspects of a molten salt heat transfer fluid in a trough solar field Energy. ,vol. 29, pp. 861- 870 ,(2004) , 10.1016/S0360-5442(03)00191-9
M.J. Montes, A. Abánades, J.M. Martínez-Val, M. Valdés, Solar multiple optimization for a solar-only thermal power plant, using oil as heat transfer fluid in the parabolic trough collectors Solar Energy. ,vol. 83, pp. 2165- 2176 ,(2009) , 10.1016/J.SOLENER.2009.08.010
Henry Price, A Parabolic Trough Solar Power Plant Simulation Model Solar Energy. pp. 665- 673 ,(2003) , 10.1115/ISEC2003-44241
T. Ruegamer, H. Kamp, T. Kuckelkorn, W. Schiel, G. Weinrebe, P. Nava, K. Riffelmann, T. Richert, Molten Salt for Parabolic Trough Applications: System Simulation and Scale Effects Energy Procedia. ,vol. 49, pp. 1523- 1532 ,(2014) , 10.1016/J.EGYPRO.2014.03.161
Andrea Giostri, Marco Binotti, Marco Astolfi, Paolo Silva, Ennio Macchi, Giampaolo Manzolini, Comparison of different solar plants based on parabolic trough technology Solar Energy. ,vol. 86, pp. 1208- 1221 ,(2012) , 10.1016/J.SOLENER.2012.01.014
Teresita Larraín, Rodrigo Escobar, Julio Vergara, Performance model to assist solar thermal power plant siting in northern Chile based on backup fuel consumption Renewable Energy. ,vol. 35, pp. 1632- 1643 ,(2010) , 10.1016/J.RENENE.2010.01.008