A Duality Theory for a Class of Generalized Fractional Programs

作者: C. H. Scott , T. R. Jefferson , J. B. G. Frenk

DOI: 10.1023/A:1008274708071

关键词:

摘要: In generalized fractional programming, one seeks to minimize the maximum of a finite number ratios. Such programs are, in general, nonconvex and consequently are difficult solve. Here, we consider particular case which ratio is quotient quadratic form positive concave function. The dual such problem constructed numerical example given.

参考文章(12)
J. -P. Crouzeix, J. A. Ferland, S. Schaible, Duality in generalized linear fractional programming Mathematical Programming. ,vol. 29, pp. 243- 243 ,(1984) , 10.1007/BF02592224
C. H. Scott, T. R. Jefferson, Convex dual for quadratic concave fractional programs Journal of Optimization Theory and Applications. ,vol. 91, pp. 115- 122 ,(1996) , 10.1007/BF02192285
R. Jagannathan, S. Schaible, Duality in generalized fractional programming via Farkas' lemma Journal of Optimization Theory and Applications. ,vol. 41, pp. 417- 424 ,(1983) , 10.1007/BF00935361
A. I. Barros, J. B. G. Frenk, S. Schaible, S. Zhang, Using duality to solve generalized fractional programming problems Journal of Global Optimization. ,vol. 8, pp. 139- 170 ,(1996) , 10.1007/BF00138690
C. H. Scott, T. R. Jefferson, Conjugate duality in generalized fractional programming Journal of Optimization Theory and Applications. ,vol. 60, pp. 475- 483 ,(1989) , 10.1007/BF00940349
A. I. Barros, J. B. G. Frenk, S. Schaible, S. Zhang, A new algorithm for generalized fractional programs Mathematical Programming. ,vol. 72, pp. 147- 175 ,(1996) , 10.1007/BF02592087
J. P. Crouzeix, J. A. Ferland, S. Schaible, An Algorithm for Generalized Fractional Programs Journal of Optimization Theory and Applications. ,vol. 47, pp. 35- 49 ,(1985) , 10.1007/BF00941314
M. Boncompte, J. E. Mart�nez-Legaz, Fractional programming by lower subdifferentiability techniques Journal of Optimization Theory and Applications. ,vol. 68, pp. 95- 116 ,(1991) , 10.1007/BF00939937
C. R. Bector, Programming Problems with Convex Fractional Functions Operations Research. ,vol. 16, pp. 383- 391 ,(1968) , 10.1287/OPRE.16.2.383