The spectral transformation Lánczos method for the numerical solution of large sparse generalized symmetric eigenvalue problems

作者: Thomas Ericsson , Axel Ruhe

DOI: 10.1090/S0025-5718-1980-0583502-2

关键词:

摘要: A new algorithm is developed which computes a specified number of eigenvalues in any part the spectrum generalized symmetric matrix eigenvalue problem. It uses linear system routine (factorization and solution) as tool for applying Lanczos to shifted inverted The determines sequence shifts checks that all get computed intervals between them. shown each shift several eigenvectors will converge after very few steps algorithm, most effective combination runs determined different sizes sparsity properties matrices. For large problems operation counts are about five times smaller than traditional subspace iteration methods. Tests on numerical example, arising from finite element computation nuclear power piping system, reported, it how performance predicted bears out practical situation.

参考文章(14)
H. Rutishauser, Handbook for Automatic Computation Springer Berlin Heidelberg. ,(1967) , 10.1007/978-3-642-86934-1
J. Alan George, Solution of linear systems of equations: Direct methods for finite element problems Springer, Berlin, Heidelberg. pp. 52- 101 ,(1977) , 10.1007/BFB0116615
Klaus-Juergen Bathe, Edward L. Wilson, Numerical methods in finite element analysis ,(1976)
J.H. Argyris, Th.L. Johnsen, R.A. Rosanoff, J.R. Roy, On numerical error in the finite element method Computer Methods in Applied Mechanics and Engineering. ,vol. 7, pp. 261- 282 ,(1976) , 10.1016/0045-7825(76)90017-7
C. C. PAIGE, Computational Variants of the Lanczos Method for the Eigenproblem Ima Journal of Applied Mathematics. ,vol. 10, pp. 373- 381 ,(1972) , 10.1093/IMAMAT/10.3.373
B. N. Parlett, D. S. Scott, The Lanczos algorithm with selective orthogonalization Mathematics of Computation. ,vol. 33, pp. 217- 238 ,(1979) , 10.1090/S0025-5718-1979-0514820-3
Paul S. Jensen, The Solution of Large Symmetric Eigenproblems by Sectioning SIAM Journal on Numerical Analysis. ,vol. 9, pp. 534- 545 ,(1972) , 10.1137/0709049
James R. Bunch, Linda Kaufman, Some stable methods for calculating inertia and solving symmetric linear systems Mathematics of Computation. ,vol. 31, pp. 163- 179 ,(1977) , 10.1090/S0025-5718-1977-0428694-0