Separation of Variables in the Null Hamilton-Jacobi Equation

作者: Claudia Chanu

DOI:

关键词:

摘要: This is a summary of the main results contained in forthcoming joint paper with S. Be-nenti and G. Rastelli, where we revisit theory separation variables theHamilton–Jacobi equation fixed value energy. We extend classical Levi-Civita conditions by using Lagrangian multipliers. By applying general to thecase natural Hamiltonians find generalizing those St¨ackel.

参考文章(7)
Sergio Benenti, Separability structures on riemannian manifolds Springer, Berlin, Heidelberg. pp. 512- 538 ,(1980) , 10.1007/BFB0089763
E. G. Kalnins, Willard Miller, Jr., Conformal Killing Tensors and Variable Separation for Hamilton–Jacobi Equations SIAM Journal on Mathematical Analysis. ,vol. 14, pp. 126- 137 ,(1983) , 10.1137/0514009
K Rosquist, G Pucacco, Invariants at fixed and arbitrary energy. A unified geometric approach Journal of Physics A. ,vol. 28, pp. 3235- 3252 ,(1995) , 10.1088/0305-4470/28/11/021
Andrey Tsiganov, The Maupertuis Principle and Canonical Transformations of the Extended Phase Space Journal of Nonlinear Mathematical Physics. ,vol. 8, pp. 157- 182 ,(2001) , 10.2991/JNMP.2001.8.1.12
Devendra A. Kapadia, V. I. Arnold, Ordinary Differential Equations The Mathematical Gazette. ,vol. 79, pp. 228- 229 ,(1995) , 10.2307/3620107
A. Fonda, Michal Fečkan, A. Cañada, Flaviano Battelli, P. (Pavel) Drabek, Ordinary differential equations Elsevier North Holland. ,(2004)
Ordinary Differential Equations WORLD SCIENTIFIC. pp. 223- 244 ,(1995) , 10.1142/9789812777232_0012