A Connection Between Block and Convolutional Codes

作者: G. Solomon , H. C. A. Tilborg

DOI: 10.1137/0137027

关键词:

摘要: Convolutional codes of any rate and constraint length give rise to a sequence quasi-cyclic codes. Conversely, code may be convolutionally encoded. Among the are quadratic residue codes, Reed–Solomon optimal BCH The K for convolutional encoding many these (Golay, (48, 24) OR, etc.) turns out surprisingly small. Thus using soft decoding techniques we now have new maximum likelihood algorithm block Conversely an will yield with local properties therefore good infinite coding properties.

参考文章(4)
Florence Jessie MacWilliams, Neil James Alexander Sloane, The Theory of Error-Correcting Codes ,(1977)
J. Bussgang, Some properties of binary convolutional code generators IEEE Transactions on Information Theory. ,vol. 11, pp. 90- 100 ,(1965) , 10.1109/TIT.1965.1053723
A. Viterbi, Convolutional Codes and Their Performance in Communication Systems IEEE Transactions on Communication Technology. ,vol. 19, pp. 751- 772 ,(1971) , 10.1109/TCOM.1971.1090700
G. Forney, Convolutional codes I: Algebraic structure IEEE Transactions on Information Theory. ,vol. 16, pp. 720- 738 ,(1970) , 10.1109/TIT.1970.1054541