Approximation hardness of graphic TSP on cubic graphs

作者: Marek Karpinski , Richard Schmied

DOI: 10.1051/RO/2014062

关键词:

摘要: We prove explicit approximation hardness results for the Graphic TSP on cubic and subcubic graphs as well new inapproximability bounds corresponding instances of (1,2)-TSP. The result is first known that problem. proof technique in this paper uses modular constructions simulating gadgets restricted instances. used could be also independent interest.

参考文章(21)
Richard Schmied, Marek Karpinski, Improved inapproximability results for the shortest superstring and related problems computing the australasian theory symposium. pp. 27- 36 ,(2013)
Piotr Berman, Marek Karpinski, On Some Tighter Inapproximability Results (Extended Abstract) international colloquium on automata languages and programming. pp. 200- 209 ,(1999) , 10.1007/3-540-48523-6_17
Piotr Berman, Marek Karpinski, On Some Tighter Inapproximability Results international colloquium on automata languages and programming. pp. 200- 209 ,(1998)
Michael Lampis, Richard Schmied, Marek Karpinski, New Inapproximability Bounds for TSP arXiv: Computational Complexity. ,(2013)
Richard Schmied, Marek Karpinski, On Approximation Lower Bounds for TSP with Bounded Metrics arXiv: Computational Complexity. ,(2012)
José R. Correa, Omar Larré, José A. Soto, TSP Tours in Cubic Graphs: Beyond 4/3 Algorithms – ESA 2012. pp. 790- 801 ,(2012) , 10.1007/978-3-642-33090-2_68
Piotr Berman, Marek Karpinski, 8/7-approximation algorithm for (1,2)-TSP symposium on discrete algorithms. pp. 641- 648 ,(2006) , 10.5555/1109557.1109627
Marcin Mucha, $\frac{13}{9}$-Approximation for Graphic TSP Theory of Computing Systems \/ Mathematical Systems Theory. ,vol. 55, pp. 640- 657 ,(2014) , 10.1007/S00224-012-9439-7
David Gamarnik, Moshe Lewenstein, Maxim Sviridenko, An improved upper bound for the TSP in cubic 3-edge-connected graphs Operations Research Letters. ,vol. 33, pp. 467- 474 ,(2005) , 10.1016/J.ORL.2004.09.005
Johan Håstad, Some optimal inapproximability results Journal of the ACM. ,vol. 48, pp. 798- 859 ,(2001) , 10.1145/502090.502098