A comparative study of efficient initialization methods for the k-means clustering algorithm

作者: M. Emre Celebi , Hassan A. Kingravi , Patricio A. Vela

DOI: 10.1016/J.ESWA.2012.07.021

关键词:

摘要: K-means is undoubtedly the most widely used partitional clustering algorithm. Unfortunately, due to its gradient descent nature, this algorithm is highly sensitive to the initial placement of …

参考文章(78)
Mothd Belal Al-Daoud, A New Algorithm for Cluster Initialization. WEC (2). pp. 74- 76 ,(2005)
Gerhard Hommel, Gudrun Bernhard, Multiple Hypotheses Testing Physica-Verlag HD. pp. 211- 235 ,(1993) , 10.1007/978-3-642-99766-2_10
B. Bergmann, G. Hommel, Improvements of General Multiple Test Procedures for Redundant Systems of Hypotheses Springer, Berlin, Heidelberg. pp. 100- 115 ,(1988) , 10.1007/978-3-642-52307-6_8
Greg Hamerly, Making k-means Even Faster. siam international conference on data mining. pp. 130- 140 ,(2010)
H. Späth, Computational experiences with the exchange method European Journal of Operational Research. ,vol. 1, pp. 23- 31 ,(1977) , 10.1016/S0377-2217(77)81005-9
Janez Demšar, Statistical Comparisons of Classifiers over Multiple Data Sets Journal of Machine Learning Research. ,vol. 7, pp. 1- 30 ,(2006)
Usama M. Fayyad, Paul S. Bradley, Refining Initial Points for K-Means Clustering international conference on machine learning. pp. 91- 99 ,(1998)
Julius T. Tou, Rafael C. Gonzalez, Pattern recognition principles ,(1974)
Ting Su, Jennifer G. Dy, In search of deterministic methods for initializing K-means and Gaussian mixture clustering intelligent data analysis. ,vol. 11, pp. 319- 338 ,(2007) , 10.3233/IDA-2007-11402