Approximation of sums of oscillating summands in certain physical problems

作者: Ekatherina A. Karatsuba

DOI: 10.1063/1.1797552

关键词:

摘要: The motion of a one-dimensional harmonic oscillator caused by recurring pushes in the absence friction is considered. In particular, two cases are studied: case when become more frequent and other one less frequent. By means an application Hardy–Littlewood–Vinogradov–Van der Corput theorem on approximation exponential sums shorter ones, new asymptotic formulas for solution problem obtained.

参考文章(5)
Anatoliĭ Alekseevich Karat︠s︡uba, S. M. Voronin, The Riemann Zeta-Function ,(1992)
A. A. Karatsuba, Approximation of exponential sums by shorter ones Proceedings of the Indian Academy of Sciences - Section A. ,vol. 97, pp. 167- 178 ,(1987) , 10.1007/BF02837821
G. H. Hardy, J. E. Littlewood, The zeros of Riemann's zeta-function on the critical line Mathematische Zeitschrift. ,vol. 10, pp. 283- 317 ,(1921) , 10.1007/BF01211614
A. Fonda, Michal Fečkan, A. Cañada, Flaviano Battelli, P. (Pavel) Drabek, Ordinary differential equations Elsevier North Holland. ,(2004)