Recognizing Outer 1-Planar Graphs in Linear Time

作者: Christopher Auer , Christian Bachmaier , Franz J. Brandenburg , Andreas Gleißner , Kathrin Hanauer

DOI: 10.1007/978-3-319-03841-4_10

关键词:

摘要: A graph is outer 1-planar o1p if it can be drawn in the plane such that all vertices are on face and each edge crossed at most once. graphs generalize outerplanar graphs, which recognized linear time specialize whose recognition $\mathcal{NP}$ -hard. Our main result a linear-time algorithm first tests whether graphi¾?G o1p, then computes an embedding. Moreover, augment G to maximal graph. If not includes one of six minors see Fig. 3, also detected by algorithm. Hence, returns positive or negative witness for o1p.

参考文章(40)
Md. Jawaherul Alam, Franz J. Brandenburg, Stephen G. Kobourov, Straight-Line Grid Drawings of 3-Connected 1-Planar Graphs graph drawing. pp. 83- 94 ,(2013) , 10.1007/978-3-319-03841-4_8
Carla Binucci, Emilio Di Giacomo, Walter Didimo, Fabrizio Montecchiani, Maurizio Patrignani, Antonios Symvonis, Ioannis G. Tollis, Fan-planarity Theoretical Computer Science. ,vol. 589, pp. 76- 86 ,(2015) , 10.1016/J.TCS.2015.04.020
Maurizio Patrignani, Planarity Testing and Embedding graph drawing. pp. 1- 42 ,(2013)
Feifeng Zheng, Stanley P. Y. Fung, Wun-Tat Chan, Francis Y. L. Chin, Chung Keung Poon, Prudence W. H. Wong, Improved on-line broadcast scheduling with deadlines computing and combinatorics conference. pp. 320- 329 ,(2006) , 10.1007/11809678_34
Grzegorz Rozenberg, Handbook of graph grammars and computing by graph transformation: volume I. foundations World Scientific Publishing Co., Inc.. ,(1997) , 10.1142/3303
Franz J. Brandenburg, The computational complexity of certain graph grammars Theoretical Computer Science. pp. 91- 99 ,(1983) , 10.1007/BFB0036472
Carsten Gutwenger, Petra Mutzel, A Linear Time Implementation of SPQR-Trees graph drawing. pp. 77- 90 ,(2000) , 10.1007/3-540-44541-2_8
Niklaus Wirth, Algorithms and data structures 288 p. : ill. Englewood, New Jersey: Prentice-Hall Inc., 1986. includes bibliography and index. ,(1986)
J�nos Pach, G�za T�th, Graphs drawn with few crossings per edge Combinatorica. ,vol. 17, pp. 427- 439 ,(1997) , 10.1007/BF01215922