Formulae for the solution of Lyapunov matrix equations

作者: N. J. YOUNG

DOI: 10.1080/00207178008961035

关键词:

摘要: A new algorithm for solving the Lyapunov matrix equation X − A∗XA = Q is proposed. The method proceeds by reducing to a special case which an explicit formula given. technique purely algebraic (i.e. involves no iteration), but does not involve calculation of characteristic polynomial or reduction canonical form. If symmetric and matrices are type n × n, number multiplications divisions required about 4n4. Two simple devices given whereby can be extended wider class linear equations.

参考文章(12)
S. Barnett, H. H. Robertson, C. Storey, Matrix methods in stability theory ,(1970)
Morris Marden, Geometry of Polynomials ,(1970)
J. L. Lavoie, The mth Power of an$n \times n$ Matrix and the Bell Polynomials Siam Journal on Applied Mathematics. ,vol. 29, pp. 511- 514 ,(1975) , 10.1137/0129042
A. G. J. MACFARLANE, THE CALCULATION OF FUNCTIONALS OF THE TIME AND FREQUENCY RESPONSE OF A LINEAR CONSTANT COEFFICIENT DYNAMICAL SYSTEM Quarterly Journal of Mechanics and Applied Mathematics. ,vol. 16, pp. 259- 271 ,(1963) , 10.1093/QJMAM/16.2.259
Peter Lancaster, Explicit Solutions of Linear Matrix Equations SIAM Review. ,vol. 12, pp. 544- 566 ,(1970) , 10.1137/1012104
R. E. Kalman, J. E. Bertram, Control System Analysis and Design Via the “Second Method” of Lyapunov: I—Continuous-Time Systems Journal of Basic Engineering. ,vol. 82, pp. 371- 393 ,(1960) , 10.1115/1.3662604
E. Davison, F. Man, The numerical solution of A'Q+QA =-C IEEE Transactions on Automatic Control. ,vol. 13, pp. 448- 449 ,(1968) , 10.1109/TAC.1968.1098954
C. Chen, H. Chu, A matrix for evaluating Schwarz's form IEEE Transactions on Automatic Control. ,vol. 11, pp. 303- 305 ,(1966) , 10.1109/TAC.1966.1098302
Kenneth Hoffman, Banach Spaces of Analytic Functions ,(1962)