Hidden classical symmetry in quantum spaces at roots of unity : From q-sphere to fuzzy sphere

作者: A Jevicki , M Mihailescu , S Ramgoolam

DOI:

关键词:

摘要: We study relations between different kinds of non-commutative spheres which have appeared in the context ADS/CFT correspondences recently, emphasizing connections spaces that manifest quantum group symmetry and classical symmetry. In particular we consider quotient $SU_q(2)/U(1)$ at roots unity, find its with fuzzy sphere SU(2) Deformation maps symmetry, $U_q(SU(2))$ module structure indecomposable representations unity conspire an interesting way to allow relation manifestly $U_q(SU(2)$ symmetric U(SU(2)) spheres. The suggests a subset field theory actions on q-sphere are equivalent sphere. results here compatible proposal appear as effective geometries account for finite N effects correspondence.

参考文章(34)
Sumit R. Das, Antal Jevicki, Samir D. Mathur, Giant gravitons, Bogomol’nyi-Prasad-Sommerfield bounds, and noncommutativity Physical Review D. ,vol. 63, pp. 044001- ,(2001) , 10.1103/PHYSREVD.63.044001
Vyjayanthi Chari, A guide to quantum groups ,(1994)
Nathan Seiberg, Edward Witten, String theory and noncommutative geometry Journal of High Energy Physics. ,vol. 1999, pp. 032- 032 ,(1999) , 10.1088/1126-6708/1999/09/032
E. Buffenoir, Ph. Roche, Harmonic Analysis on the Quantum Lorentz Group Communications in Mathematical Physics. ,vol. 207, pp. 499- 555 ,(1999) , 10.1007/S002200050736
Robert Coquereaux, R. Trinchero, A.O. Garcia, Finite dimensional quantum group covariant differential calculus on a complex matrix algebra Physics Letters B. ,vol. 443, pp. 221- 232 ,(1998) , 10.1016/S0370-2693(98)01303-3
John McGreevy, Leonard Susskind, Nicolaos Toumbas, Invasion of the giant gravitons from Anti-de Sitter space Journal of High Energy Physics. ,vol. 2000, pp. 008- 008 ,(2000) , 10.1088/1126-6708/2000/06/008
M.J. Duff, H. Lü, C.N. Pope, AdS3 × S3 (un) twisted and squashed, and an multiplet of dyonic strings Nuclear Physics. ,vol. 544, pp. 145- 180 ,(1999) , 10.1016/S0550-3213(98)00810-4
B. Ponsot, J. Teschner, Clebsch–Gordan and Racah–Wigner Coefficients for a Continuous Series of Representations of ?q (??(2, ℝ)) Communications in Mathematical Physics. ,vol. 224, pp. 613- 655 ,(2001) , 10.1007/PL00005590
G.E. Schieber, Robert Coquereaux, Action of finite quantum group on the algebra of complex N×N matrices To be published in the proceedings of. ,vol. 453, pp. 9- 23 ,(1998) , 10.1063/1.57119
T Matsuzaki, T Suzuki, Unitary highest weight representation of Uq(su(1,1)) when q is a root of unity Journal of Physics A. ,vol. 26, pp. 4355- 4369 ,(1993) , 10.1088/0305-4470/26/17/041