Convex Optimal Uncertainty Quantification

作者: Shuo Han , Molei Tao , Ufuk Topcu , Houman Owhadi , Richard M. Murray

DOI: 10.1137/13094712X

关键词:

摘要: Optimal uncertainty quantification (OUQ) is a framework for numerical extreme-case analysis of stochastic systems with imperfect knowledge the underlying probability distribution. This paper presents sufficient conditions under which an OUQ problem can be reformulated as finite-dimensional convex optimization problem, efficient solutions obtained. The include that objective function piecewise concave and constraints are convex. In particular, we show functions may appear in applications where defined by optimal value parameterized linear program.

参考文章(24)
Alexander Shapiro, ON DUALITY THEORY OF CONIC LINEAR PROBLEMS Springer, Boston, MA. pp. 135- 165 ,(2001) , 10.1007/978-1-4757-3403-4_7
Naum Ilʹich Akhiezer, Mark Grigorʹevich Kreĭn, None, Some questions in the theory of moments Translations of Mathematical#N# Monographs. ,(1962) , 10.1090/MMONO/002
Yurii Nesterov, Arkadii Nemirovskii, Interior-Point Polynomial Algorithms in Convex Programming ,(1987)
John Tsitsiklis, Dimitris Bertsimas, Introduction to linear optimization ,(1997)
Houman Owhadi, Clint Scovel, Brittleness of Bayesian inference and new Selberg formulas arXiv: Statistics Theory. ,(2013)
Albert W. Marshall, Ingram Olkin, Multivariate Chebyshev Inequalities The Annals of Mathematical Statistics. ,vol. 31, pp. 1001- 1014 ,(1960) , 10.1214/AOMS/1177705673
Geoffrey R. Grimmett, David Stirzaker, Probability and random processes ,(1982)
Keiiti Isii, On a method for generalizations of tchebycheff’s inequality Annals of the Institute of Statistical Mathematics. ,vol. 10, pp. 65- 88 ,(1959) , 10.1007/BF02883863
Sanjay Mehrotra, He Zhang, Models and algorithms for distributionally robust least squares problems Mathematical Programming. ,vol. 146, pp. 123- 141 ,(2014) , 10.1007/S10107-013-0681-9