On the generalized dimensions of multifractal eigenstates

作者: J A Méndez-Bermúdez , A Alcazar-López , Imre Varga

DOI: 10.1088/1742-5468/2014/11/P11012

关键词:

摘要: Recently, based on heuristic arguments, it was conjectured that an intimate relation exists between any multifractal dimensions, Dq and , of the eigenstates critical random matrix ensembles: 1 ⩽ q, q′ ⩽ 2. Here, we verify this by extensive numerical calculations ensembles extend its applicability to q < 1/2, but also deterministic models producing generic structures. We demonstrate, for scattering version power-law banded model at criticality, scaling exponents σq inverse moments Wigner delay times, where N is linear size system, are related level compressibility χ as σq ≈ q (1 − χ)[1 + qχ]−1 a limited range q, thus providing way probe correlations means experiments.

参考文章(85)
Edward Ott, Chaos in Dynamical Systems Cambridge University Press. ,(2002) , 10.1017/CBO9780511803260
J. A. Méndez-Bermúdez, Tsampikos Kottos, Probing the eigenfunction fractality using Wigner delay times Physical Review B. ,vol. 72, pp. 064108- ,(2005) , 10.1103/PHYSREVB.72.064108
Thomas Guhr, Axel Müller–Groeling, Hans A. Weidenmüller, Random-matrix theories in quantum physics: common concepts Physics Reports. ,vol. 299, pp. 189- 425 ,(1998) , 10.1016/S0370-1573(97)00088-4
J. A. Méndez-Bermúdez, I. Varga, Scattering at the Anderson transition : Power-law banded random matrix model Physical Review B. ,vol. 74, pp. 125114- ,(2006) , 10.1103/PHYSREVB.74.125114
Marc Rühländer, Peter Markoš, C. M. Soukoulis, Symmetry, dimension, and the distribution of the conductance at the mobility edge Physical Review B. ,vol. 64, pp. 212202- ,(2001) , 10.1103/PHYSREVB.64.212202
F. Wegner, Inverse participation ratio in 2+ ε dimensions European Physical Journal B. ,vol. 36, pp. 209- 214 ,(1980) , 10.1007/BF01325284