Generalized Exponential Symmetry Model and Orthogonal Decomposition of Symmetry for Square Tables

作者: Kurakami Hiroyuki

DOI: 10.2174/1876527001103010001

关键词:

摘要: For the analysis of square contingency tables with ordered categories, some models that log odds for two symmetric cell probabilities is a linear function row and column values have been considered. This paper proposes generalization these models. also model weighted sum probability an observation will fall in one cells upper right triangle table equal to it falls lower left table. In addition, this gives theorem symmetry equivalent both proposed holding simultaneously. Moreover, shows likelihood ratio statistic testing goodness-of-fit asymptotically those Examples are given.

参考文章(18)
Kouji Tahata, Sadao Tomizawa, The analysis of symmetry and asymmetry : orthogonality of decomposition of symmetry into quasi-symmetry and marginal symmetry for multi-way tables Journal de la Société Française de Statistique & revue de statistique appliquée. ,vol. 148, pp. 3- 36 ,(2007)
Genshiro Kitagawa, Sadanori Konishi, Information Criteria and Statistical Modeling ,(2007)
Albert H. Bowker, A Test for Symmetry in Contingency Tables Journal of the American Statistical Association. ,vol. 43, pp. 572- 574 ,(1948) , 10.1080/01621459.1948.10483284
Kouji Tahata, Sadao Tomizawa, Orthogonal decomposition of point-symmetry for multiway tables AStA Advances in Statistical Analysis. ,vol. 92, pp. 255- 269 ,(2008) , 10.1007/S10182-008-0070-5
Joseph B. Lang, On the Partitioning of Goodness-of-Fit Statistics for Multivariate Categorical Response Models Journal of the American Statistical Association. ,vol. 91, pp. 1017- 1023 ,(1996) , 10.1080/01621459.1996.10476972
S.M. Miller, Comparative Social Mobility Current Sociology. ,vol. 9, pp. 1- 61 ,(1960) , 10.1177/001139216000900101
J. N. Darroch, D. Ratcliff, Generalized Iterative Scaling for Log-Linear Models Annals of Mathematical Statistics. ,vol. 43, pp. 1470- 1480 ,(1972) , 10.1214/AOMS/1177692379
Michael Haber, Maximum likelihood methods for linear and log-linear models in categorical data Computational Statistics & Data Analysis. ,vol. 3, pp. 1- 10 ,(1985) , 10.1016/0167-9473(85)90053-2
Joseph B. Lang, Alan Agresti, Simultaneously Modeling Joint and Marginal Distributions of Multivariate Categorical Responses Journal of the American Statistical Association. ,vol. 89, pp. 625- 632 ,(1994) , 10.1080/01621459.1994.10476787
Yvonne M Bishop, Stephen E Fienberg, Paul W Holland, None, Discrete Multivariate Analysis: Theory and Practice ,(1975)