Statistical Distances Based on Euclidean Graphs

作者: R. Jiménez , J. E. Yukich

DOI: 10.1007/0-387-23394-6_10

关键词:

摘要: A general approach, based on covering by cells, induced Euclidean graphs, is developed to provide asymptotic characterizations of multivariate sample densities. This approach provides high dimensional analogs basic results for random partitions one-dimensional spacings. The methods used in the proofs yield asymptotics empirical φ-divergences k-spacings and also total edge length graphs involved.

参考文章(29)
Richard M. Dudley, Real Analysis and Probability ,(1989)
Noel Cressie, Timothy R.C. Read, Multinomial goodness-of-fit tests Journal of the royal statistical society series b-methodological. ,vol. 46, pp. 440- 464 ,(1984) , 10.1111/J.2517-6161.1984.TB01318.X
R. Jiménez, J. E. Yukich, Asymptotics for Statistical Distances Based on Voronoi Tessellations Journal of Theoretical Probability. ,vol. 15, pp. 503- 541 ,(2002) , 10.1023/A:1014819112010
David Aldous, J. Michael Steele, The Objective Method: Probabilistic Combinatorial Optimization and Local Weak Convergence Springer, Berlin, Heidelberg. ,vol. 110, pp. 1- 72 ,(2004) , 10.1007/978-3-662-09444-0_1
Franz Aurenhammer, Voronoi diagrams—a survey of a fundamental geometric data structure ACM Computing Surveys. ,vol. 23, pp. 345- 405 ,(1991) , 10.1145/116873.116880
Lars Holst, J. S. Rao, Asymptotic spacings theory with applications to the two-sample problem Canadian Journal of Statistics-revue Canadienne De Statistique. ,vol. 9, pp. 79- 89 ,(1981) , 10.2307/3315298
Jillian Beardwood, J. H. Halton, J. M. Hammersley, The shortest path through many points Mathematical Proceedings of the Cambridge Philosophical Society. ,vol. 55, pp. 299- 327 ,(1959) , 10.1017/S0305004100034095