Rogue Wave Solutions for Nonlinear Schrödinger Equation with Variable Coefficients in Nonlinear Optical Systems

作者: Qi Chen , Wei-Guo Zhang , Hai-Qiang Zhang , Bo Yang

DOI: 10.1088/0253-6102/62/3/14

关键词:

摘要: In this paper, the generalized Darboux transformation is constructed to variable coefficient nonlinear Schrodinger (NLS) equation. The N-th order rogue wave solution of NLS equation obtained by determinant expression form. particular, we present waves from first third-order through some figures and analyze their dynamics.

参考文章(30)
Zong Feng-De, Dai Chao-Qing, Yang Qin, Zhang Jie-Fang, Soliton solutions for variable coefficient nonlinear Schr?dinger equation for optical fiber and their application Acta Physica Sinica. ,vol. 55, pp. 3805- 3812 ,(2006) , 10.7498/APS.55.3805
Zhenya Yan, Financial rogue waves arXiv: Pricing of Securities. ,(2009) , 10.1088/0253-6102/54/5/31
Xiao-Li Wang, Wei-Guo Zhang, Bao-Guo Zhai, Hai-Qiang Zhang, Rogue Waves of the Higher-Order Dispersive Nonlinear Schrödinger Equation Communications in Theoretical Physics. ,vol. 58, pp. 531- 538 ,(2012) , 10.1088/0253-6102/58/4/15
Bao-Guo Zhai, Wei-Guo Zhang, Xiao-Li Wang, Hai-Qiang Zhang, Multi-rogue waves and rational solutions of the coupled nonlinear Schrödinger equations Nonlinear Analysis-real World Applications. ,vol. 14, pp. 14- 27 ,(2013) , 10.1016/J.NONRWA.2012.04.010
Yu. V. Bludov, V. V. Konotop, N. Akhmediev, Matter rogue waves Physical Review A. ,vol. 80, pp. 033610- ,(2009) , 10.1103/PHYSREVA.80.033610
Ruiyu Hao, Guosheng Zhou, Exact multi-soliton solutions in nonlinear optical systems Optics Communications. ,vol. 281, pp. 4474- 4478 ,(2008) , 10.1016/J.OPTCOM.2008.04.036
Zhiyong Xu, Lu Li, Zhonghao Li, Guosheng Zhou, K. Nakkeeran, Exact soliton solutions for the core of dispersion-managed solitons. Physical Review E. ,vol. 68, pp. 046605- ,(2003) , 10.1103/PHYSREVE.68.046605
Shibao Shan, Chuanzhong Li, Jingsong He, On rogue wave in the Kundu-DNLS equation Communications in Nonlinear Science and Numerical Simulation. ,vol. 18, pp. 3337- 3349 ,(2013) , 10.1016/J.CNSNS.2013.05.006
Liu Xi-Zhong, Approximate Homotopy Symmetry Reduction Method: Infinite Series Reductions to Kawahara Equation Communications in Theoretical Physics. ,vol. 54, pp. 31- 34 ,(2010) , 10.1088/0253-6102/54/1/06