On the variational principle

作者: I. Ekeland

DOI: 10.1016/0022-247X(74)90025-0

关键词:

摘要: The variational principle states that if a differentiable functional F attains its minimum at some point u ̄, then F′(u ̄)= 0; it has proved a valuable tool for studying partial differential equations. This paper shows that if a differentiable function F has a finite lower bound (although it need not attain it), then, for every ϵ> 0, there exists some point u ϵ, where∥ F′(u ϵ)∥∗⩽ ϵ, ie, its derivative can be made arbitrarily small. Applications are given to Plateau's problem, to partial differential equations, to nonlinear eigenvalues, to geodesics …

参考文章(19)
John Harris McAlpin, Infinite dimensional manifolds and Morse theory University Microfilms. ,(1968)
Nathaniel Grossman, Geodesics on Hilbert Manifolds University Microfilms. ,(1967)
Karen K. Uhlenbeck, The calculus of variations and global analysis University Microfilms. ,(1968)
Richard S. Palais, Foundations of global non-linear analysis W.A. Benjamin. ,(1968)
Ralph Abraham, Joel W. Robbin, Transversal mappings and flows ,(2008)
D. G. Ebin, Espace des mitriques riemanniennes et mouvement des fluides via les varietes d'applications Centre de Mathematiques de l'Ecole Polytechnique et Universite Paris VII. ,(1972)
Jean-Paul Penot, Topologie faible sur des variétés de Banach. Application aux géodésiques des variétés de Sobolev Journal of Differential Geometry. ,vol. 9, pp. 141- 168 ,(1974) , 10.4310/JDG/1214432098
S. Smale, Morse Theory and a Non-Linear Generalization of the Dirichlet Problem The Annals of Mathematics. ,vol. 80, pp. 382- ,(1964) , 10.2307/1970398
R. S. Palais, S. Smale, A generalized Morse theory Bulletin of the American Mathematical Society. ,vol. 70, pp. 165- 172 ,(1964) , 10.1090/S0002-9904-1964-11062-4
M. Edelstein, On Nearest Points of Sets in Uniformly Convex Banach Spaces Journal of the London Mathematical Society. ,vol. s1-43, pp. 375- 377 ,(1968) , 10.1112/JLMS/S1-43.1.375