Square-free S-modules with support on a simplicial graph and Brill-Noether theory

作者: Henning Lohne

DOI:

关键词:

摘要: We study square-free S-modules with support on a simplicial graph, and investigate an analogy between Cohen--Macaulay modules, locally of rank 1, supported connected graph line bundles curve. use the combinatorial structure to prove corresponding Riemann-Roch theorem, we Jacobian for Brill-Noether theory 2-connected graphs.

参考文章(8)
Peter Jephson Cameron, Combinatorics: Topics, Techniques, Algorithms ,(1994)
Richard P. Stanley, Combinatorics and commutative algebra ,(1983)
H. Jürgen Herzog, Winfried Bruns, Cohen-Macaulay rings ,(1993)
Kohji Yanagawa, Alexander Duality for Stanley–Reisner Rings and Squarefree Nn-Graded Modules Journal of Algebra. ,vol. 225, pp. 630- 645 ,(2000) , 10.1006/JABR.1999.8130
Kenneth Baclawski, Canonical modules of partially ordered sets Journal of Algebra. ,vol. 83, pp. 1- 5 ,(1983) , 10.1016/0021-8693(83)90131-X
Kohji YANAGAWA, Derived category of squarefree modules and local cohomology with monomial ideal support Journal of The Mathematical Society of Japan. ,vol. 56, pp. 289- 308 ,(2004) , 10.2969/JMSJ/1191418707
Ezra Miller, The Alexander Duality Functors and Local Duality with Monomial Support Journal of Algebra. ,vol. 231, pp. 180- 234 ,(2000) , 10.1006/JABR.2000.8359
Matthew Baker, Serguei Norine, Riemann–Roch and Abel–Jacobi theory on a finite graph Advances in Mathematics. ,vol. 215, pp. 766- 788 ,(2007) , 10.1016/J.AIM.2007.04.012