Solution semiflow to the isentropic Euler system

作者: Dominic Breit , Martina Hofmanova , Eduard Feireisl

DOI: 10.1007/S00205-019-01420-6

关键词:

摘要: It is nowadays well understood that the multidimensional isentropic Euler system desperately ill--posed. Even certain smooth initial data give rise to infinitely many solutions and all available selection criteria fail ensure both global existence uniqueness. We propose a different approach well--posedness of this based on ideas from theory Markov semigroups: we show Borel measurable solution semiflow. To end, introduce notion dissipative which as time dependent trajectories basic state variables - mass density, linear momentum, energy in suitable phase space. The underlying PDEs satisfied generalized sense. semiflow enjoys standard semigroup property coincide with strong long latter exist. Moreover, they minimize (maximize dissipation) among solutions.

参考文章(25)
Daniel W. Stroock, Srinivasa R. S. Varadhan, Multidimensional Diffusion Processes ,(1979)
Guy Bouchitté, Jean-Jacques Alibert, Non-Uniform Integrability and Generalized Young Measures Journal of Convex Analysis. ,vol. 4, pp. 129- 147 ,(1997)
Gui-Qiang G. Chen, Gui-Qiang G. Chen, Mikhail Perepelitsa, VANISHING VISCOSITY SOLUTIONS OF THE COMPRESSIBLE EULER EQUATIONS WITH SPHERICAL SYMMETRY AND LARGE INITIAL DATA Communications in Mathematical Physics. ,vol. 338, pp. 771- 800 ,(2015) , 10.1007/S00220-015-2376-Y
J. M. Ball, A version of the fundamental theorem for young measures LNP. ,vol. 344, pp. 207- 215 ,(1989) , 10.1007/BFB0024945
Eduard Feireisl, Weak Solutions to Problems Involving Inviscid Fluids arXiv: Analysis of PDEs. pp. 377- 399 ,(2016) , 10.1007/978-4-431-56457-7_13
Camillo de Lellis, László Székelyhidi, On Admissibility Criteria for Weak Solutions of the Euler Equations Archive for Rational Mechanics and Analysis. ,vol. 195, pp. 225- 260 ,(2010) , 10.1007/S00205-008-0201-X
Constantine M Dafermos, The entropy rate admissibility criterion for solutions of hyperbolic conservation laws Journal of Differential Equations. ,vol. 14, pp. 202- 212 ,(1973) , 10.1016/0022-0396(73)90043-0
Ronald J. DiPerna, Convergence of the viscosity method for isentropic gas dynamics Communications in Mathematical Physics. ,vol. 91, pp. 1- 30 ,(1983) , 10.1007/BF01206047
Pierre-Louis Lions, Benoît Perthame, Panagiotis E. Souganidis, Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates Communications on Pure and Applied Mathematics. ,vol. 49, pp. 599- 638 ,(1998) , 10.1002/(SICI)1097-0312(199606)49:6<599::AID-CPA2>3.0.CO;2-5
C. M. Dafermos, The second law of thermodynamics and stability Archive for Rational Mechanics and Analysis. ,vol. 70, pp. 167- 179 ,(1979) , 10.1007/BF00250353