Abnormality Detection and Localization in Chest X-Rays using Deep Convolutional Neural Networks

作者: Khalid Ashraf , Mohammad Tariqul Islam , Ahmed Tahseen Minhaz , Abdul Aowal

DOI:

关键词:

摘要: Chest X-Rays (CXRs) are widely used for diagnosing abnormalities in the heart and lung area. Automatically detecting these abnormalities with high accuracy could greatly enhance real world diagnosis processes. Lack of standard publicly available dataset and benchmark studies, however, makes it difficult to compare various detection methods. In order to overcome these difficulties, we have used a publicly available Indiana CXR, JSRT and Shenzhen dataset and studied the performance of known deep convolutional network …

参考文章(24)
Diederik P. Kingma, Jimmy Ba, Adam: A Method for Stochastic Optimization arXiv: Learning. ,(2014)
Yaniv Bar, Idit Diamant, Lior Wolf, Sivan Lieberman, Eli Konen, Hayit Greenspan, Chest pathology detection using deep learning with non-medical training international symposium on biomedical imaging. pp. 294- 297 ,(2015) , 10.1109/ISBI.2015.7163871
Karen Simonyan, Andrew Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition computer vision and pattern recognition. ,(2014)
Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Müller, Wojciech Samek, On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation. PLOS ONE. ,vol. 10, pp. 0130140- ,(2015) , 10.1371/JOURNAL.PONE.0130140
Stefan Jaeger, Alexandros Karargyris, Sema Candemir, Les Folio, Jenifer Siegelman, Fiona Callaghan, Zhiyun Xue, Kannappan Palaniappan, Rahul K. Singh, Sameer Antani, George Thoma, Yi-Xiang Wang, Pu-Xuan Lu, Clement J. McDonald, Automatic Tuberculosis Screening Using Chest Radiographs IEEE Transactions on Medical Imaging. ,vol. 33, pp. 233- 245 ,(2014) , 10.1109/TMI.2013.2284099
Bram van Ginneken, Mikkel B. Stegmann, Marco Loog, Segmentation of anatomical structures in chest radiographs using supervised methods: a comparative study on a public database. Medical Image Analysis. ,vol. 10, pp. 19- 40 ,(2006) , 10.1016/J.MEDIA.2005.02.002
Atul Kumar, Yen-Yu Wang, Kai-Che Liu, I-Chen Tsai, Ching-Chun Huang, Nguyen Hung, None, Distinguishing normal and pulmonary edema chest x-ray using Gabor filter and SVM 2014 IEEE International Symposium on Bioelectronics and Bioinformatics (IEEE ISBB 2014). pp. 1- 4 ,(2014) , 10.1109/ISBB.2014.6820918
Ilya Sutskever, Geoffrey Hinton, Alex Krizhevsky, Ruslan Salakhutdinov, Nitish Srivastava, Dropout: a simple way to prevent neural networks from overfitting Journal of Machine Learning Research. ,vol. 15, pp. 1929- 1958 ,(2014)
Jost Tobias Springenberg, Alexey Dosovitskiy, Martin Riedmiller, Thomas Brox, Striving for Simplicity: The All Convolutional Net arXiv: Learning. ,(2014)
Junji Shiraishi, Shigehiko Katsuragawa, Junpei Ikezoe, Tsuneo Matsumoto, Takeshi Kobayashi, Ken-ichi Komatsu, Mitate Matsui, Hiroshi Fujita, Yoshie Kodera, Kunio Doi, Development of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists' detection of pulmonary nodules. American Journal of Roentgenology. ,vol. 174, pp. 71- 74 ,(2000) , 10.2214/AJR.174.1.1740071