A peek into the black box: exploring classifiers by randomization

作者: Andreas Henelius , Kai Puolamäki , Henrik Boström , Lars Asker , Panagiotis Papapetrou

DOI: 10.1007/S10618-014-0368-8

关键词:

摘要: Classifiers are often opaque and cannot easily be inspected to gain understanding of which factors importance. We propose an efficient iterative algorithm find the attributes dependencies used by any classifier when making predictions. The performance utility is demonstrated on two synthetic 26 real-world datasets, using 15 commonly learning algorithms generate classifiers. empirical investigation shows that novel indeed able groupings interacting exploited different These allow for finding similarities among classifiers a single dataset as well determining extent exploit such interactions in general.

参考文章(33)
Huan Liu, Zheng Zhao, Searching for interacting features international joint conference on artificial intelligence. pp. 1156- 1161 ,(2007)
Matthew Wiener, Andy Liaw, Classification and Regression by randomForest ,(2007)
Gemma C. Garriga, Markus Ojala, Permutation Tests for Studying Classifier Performance Journal of Machine Learning Research. ,vol. 11, pp. 1833- 1863 ,(2010) , 10.5555/1756006.1859913
Gaurav Misra, Behzad Golshan, Evimaria Terzi, A Framework for Evaluating the Smoothness of Data-Mining Results Machine Learning and Knowledge Discovery in Databases. pp. 660- 675 ,(2012) , 10.1007/978-3-642-33486-3_42
Alex A. Freitas, Understanding the Crucial Role of AttributeInteraction in Data Mining Artificial Intelligence Review. ,vol. 16, pp. 177- 199 ,(2001) , 10.1023/A:1011996210207
Richard A Olshen, Charles J Stone, Leo Breiman, Jerome H Friedman, Classification and regression trees ,(1983)
Aleks Jakulin, Ivan Bratko, Dragica Smrke, Janez Demšar, Blaž Zupan, Attribute Interactions in Medical Data Analysis artificial intelligence in medicine in europe. pp. 229- 238 ,(2003) , 10.1007/978-3-540-39907-0_32
Carolin Strobl, Anne-Laure Boulesteix, Achim Zeileis, Torsten Hothorn, Bias in random forest variable importance measures: Illustrations, sources and a solution BMC Bioinformatics. ,vol. 8, pp. 25- 25 ,(2007) , 10.1186/1471-2105-8-25
Andreas Henelius, Jussi Korpela, Kai Puolamäki, Explaining Interval Sequences by Randomization european conference on machine learning. pp. 337- 352 ,(2013) , 10.1007/978-3-642-40988-2_22